
8 steps to guide your journey

The path to cloud-native applications

redhat.com E-book The path to cloud-native applications

Table of contents

Introduction...3

Step 1: Evolve culture and practices for the cloud...3

Step 2: Speed existing applications using microservices..3

Step 3: Use application services to speed development...4

Step 4: Choose the right tool for the right task...4

Step 5: Provide self-service, on-demand infrastructure...5

Step 6: Automate IT to accelerate application delivery...6

Step 7: Implement continuous delivery and advanced deployment techniques.......................6

Step 8: Evolve a more modular architecture...8

How Red Hat can help..8

http://redhat.com

3redhat.com E-book The path to cloud-native applications

Introduction

Applications have become the way a majority of organizations interact with their customers,
partners, and employees. This rapid rise of new digitally native capabilities has disrupted traditional
business models and required established companies and industry sectors to adapt and modernize
their operations.

For the majority of organizations, creating innovative digital experiences means pivoting to a culture
of organizational agility, where the rapid pace of demand can only be satisfied by faster and more
flexible development and delivery models. But most organizations do not have the luxury of com-
pletely rebuilding their technology foundation or immediately adopting new practices and mindsets.
Instead, they are embracing gradual yet fundamental shifts in culture, processes, and technology to
support greater velocity and agility. This e-book outlines eight steps that any organization should
consider when looking to adopt a cloud-native approach to applications.

Step 1: Evolve culture and practices for the cloud

The path to cloud-native applications requires development, line-of-business, and IT opera-
tions teams to evolve in many different ways to build and deploy apps faster and more efficiently.
Regardless of industry or size, every business needs to consider the wide range of activities, technol-
ogies, teams, and processes that require collaboration and coordination for the successful deploy-
ment of cloud applications. While traditional approaches to using public or hybrid cloud resources
let teams make independent decisions and move quickly, those strategies have also created isolated
data and environment processes that make it difficult to innovate.

In an era of rapid innovation, the complexity of managing multiple distributed environments, highly
customized legacy applications, and new application workloads can create challenges for those orga-
nizations developing a unifying cloud strategy for their applications. Often, without an enterprise-
wide cloud strategy, organizations are left with untapped potential in their application portfolio.

The adoption of a collaborative cloud culture relies not just on using new tools and technologies, but
also on encouraging people’s willingness and trust to embrace a more integrated and collaborative
approach to developing and delivering applications. The culture of open source software projects
can be a guide to building a cohesive connected cloud strategy for applications.

Step 2: Speed existing applications using microservices

When embarking on a cloud-native application journey, organizations should not only focus on new
development. Many legacy applications are critical to business operations and revenue genera-
tion and cannot simply be replaced. Rather, they need to be integrated with and work alongside new
cloud-native applications. But how do you speed up an existing monolith? The answer is to move your
existing monolithic architecture to a more modular, microservices-based architecture and applica-
tion programming interface (API)-based communication.

Before beginning the onerous task of refactoring monolithic applications into microservices, organi-
zations should first create a solid foundation for their microservices architecture.

“At its core, cloud-native
development is as much

about teams, people,
and collaboration as it
is about technology...

Collaboration is key
to building apps in

an iterative, flexible
way — stakeholders

and makers all need to
contribute to how

the product is
created, coded, tested,

and deployed.”

Red Hat research report: Cloud-native

development outlook, June 2021

http://linkedin.com/company/red
https://www.redhat.com/en/resources/cloud-native-development-outlook-whitepaper
https://www.redhat.com/en/resources/cloud-native-development-outlook-whitepaper

4redhat.com E-book The path to cloud-native applications

Moving to a microservices approach does not mean rushing to move everything at once. Break down
your monolith into smaller components at your own pace, using a phased approach. Using a phased
approach ensures that applications are built following solid design principles and properly defined
domain boundaries. This approach supports a more gradual and less risky transition to a microser-
vices architecture, if needed, and sets the foundation for a successful microservices architecture.

Applications that are highly dependent on legacy platforms can still be updated and deployed faster
by moving the existing monolith to a container-based platform. This shift speeds deployment and
delivers a higher return on investment (ROI). Subsequent integrations or features for the monolith
can be built using cloud-native techniques and approaches.

Step 3: Use application services to speed development

Reusability has always been key to speeding software development, and cloud-native applications
are no exception. However, reusable components for cloud-native applications must be optimized
and integrated into the underlying infrastructure to fully provide the speed and scalability that
cloud offers.

Why re-create a caching service, rules or workflow engine, integration connectors, mobile and API
management capabilities, data virtualization service, messaging broker, or serverless framework
when you don’t have to? You can use existing components that have been optimized and integrated
into the underlying container-based infrastructure. These application services—whether they are
Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), or integration PaaS (iPaaS) offerings—
are effectively ready-to-use developer tools.

While DevOps process and containerization accelerate application delivery and deployment, cloud-
native applications may need one or more of these types of services to help accelerate development
and get new applications to market faster. For example, developers can take advantage of applica-
tion services specifically built to perform well in a container-based infrastructure. These services
are designed to take advantage of platform capabilities, such as continuous integration/continuous
delivery (CI/CD) pipelines, rolling and blue-green deployment, automated scalability, fault tolerance,
and more.

Step 4: Choose the right tool for the right task

With cloud-native applications, the chosen development language or framework is increasingly tai-
lored to the specific business application need. To manage the resulting increase in complexity and
application diversity, organizations need a container-based application platform that supports the
right mix of frameworks, languages, and architectures to support cloud-native development.

http://linkedin.com/company/red

5redhat.com E-book The path to cloud-native applications

Cloud-native development also requires choosing the right tool for the right task. Cloud-native
applications can be implemented using a 12-factor approach, domain-based design, test-based
design and development, a monolith-first or fast monolith strategy, miniservices, or microservices.
Whatever approach you take, your cloud-native platform must offer the right mix of frameworks, lan-
guages, and architectures to support the appropriate development requirements. In addition, the
underlying container-based platform should support a set of curated runtimes and frameworks that
is continuously updated in line with technological changes.

Step 5: Provide self-service, on-demand infrastructure

Agile methods have helped developers create and update software quickly but often lack an efficient
mechanism for timely infrastructure access when and where it is required. When releasing appli-
cations to production, overall speed to market is affected. Filing a ticket and waiting weeks for IT
operations to release resources is no longer a sustainable model in an era when infrastructure is inex-
pensive and engineering talent is costly.

Self-service and on-demand infrastructure provisioning provides a compelling alternative to unau-
thorized shadow IT—allowing developers to access the infrastructure when they need it. But this
model can only be effective if IT operations teams have control and visibility across what is often a
dynamic and complex environment.

Containers and container orchestration technology abstract and simplify access to the underlying
infrastructure and provide robust application life cycle management across various infrastructure
environments, such as datacenters, private clouds, and public clouds. A container platform offers
additional self-service, automation, and application life cycle management capabilities. This
model lets developers and operations teams spin up consistent environments quickly, allowing
developers to focus on building applications without the obstacles and delays associated with
provisioning infrastructure.

Serverless

JavaScript everywhere Cloud-native JavaTM

ReactiveLightweight and embeddable

Figure 1. Cloud-native application development becomes even more diverse

http://linkedin.com/company/red

6redhat.com E-book The path to cloud-native applications

Containers also support application portability, including the creation of a cloud-native applica-
tion that can be deployed and run on any cloud provider. Portability offers the freedom to select
any cloud provider at any point in time, easily migrate from one cloud provider to another, optimize
related costs, and develop a multicloud application without coding to a specific cloud provider API.

Step 6: Automate IT to accelerate application delivery

IT or infrastructure automation is essential to accelerating the delivery of cloud-native
applications by eliminating manual IT tasks. Automation can integrate with and apply to any task
or component, from network and infrastructure provisioning to application deployment and configu-
ration management.

IT management and automation tools create repeatable processes, rules, and frameworks that can
replace or reduce labor-intensive human interaction that delays time to market. They can extend
further into specific technologies, like containers, or methods, like DevOps, into broader areas, such
as cloud computing, security, testing, monitoring, and alerting. As a result, automation is key to IT
optimization and digital transformation, speeding overall time to value.

Learn more about
the important role of

IT automation in “The
automated enterprise.”

Download the e-book

Continuous delivery (CD) is a
software development prac-

tice that uses automation
to speed the release of new

code. It establishes a process
through which a developer’s

changes to an application can
be pushed to a code reposi-

tory or container registry
through automation.

Guide for IT automation

1.	 Adopt an enterprise-wide, programmatic automation approach to IT operations. Embrace
collaborative dialog across the organization to design service requirements.

2.	 Consider automation sandboxes as the foundation for learning the automation language
and processes.

3.	 Think hard about automation. Make sure every unnecessary manual step is eliminated, even
if it is tempting to retain manual controls for peace of mind.

4.	 Consider adopting automation incrementally in small, achievable steps using systematic
methods. Each step builds on the previous one to create a widespread automation practice.

5.	 Start by automating one task or service—whether compute, network, storage, or provision-
ing. Share that automation with others and build upon it systematically.

6.	 Implement self-service catalogs that equip users with what they need and speed delivery.

7.	 Implement metering, monitoring, and chargeback policies and processes.

Over time, integrated, full-scale automation will not only become a reality but will also yield higher
efficiency, faster DevOps pipelines, and rapid innovation.

Step 7: Implement continuous delivery and advanced deployment techniques

Long release cycles mean longer delays between the discovery and resolution of software bugs, as
well as an inherent barrier to timely responses to changes in customer and market demand. For high-
traffic applications—such as mobile, web, Internet of Things (IoT), or edge computing applications—
an unresolved bug can affect many users, resulting in poor customer experiences, security or safety
issues, and reduced productivity or revenue. Even for other internal business applications, outages or
delays in addressing software bugs can have high business costs.

http://linkedin.com/company/red
https://www.redhat.com/en/topics/containers
https://www.redhat.com/en/insights/devops
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/resources/automated-enterprise-e-book
https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry
https://www.redhat.com/en/topics/automation/whats-it-automation

7redhat.com E-book The path to cloud-native applications

Agile development methods evolved to create a model of release early, release often. DevOps and
continuous delivery approaches extend these methods by closely uniting developers, operations,
quality assurance, and security teams to improve software delivery processes. As a result, code
changes can be pushed to production quickly and reliably to provide fast feedback to developers.
This iterative, fast feedback loop is enabled through CI/CD, extending infrastructure automation to
an end-to-end, automated delivery system that covers all aspects of application delivery, including
automated testing, vulnerability scanning, security compliance, and regulation checks. The goal of
automated delivery pipelines is to provide updates without affecting operational capacity, reducing
delivery risks.

The first step in achieving continuous delivery (CD) is to enable continuous integration (CI). CI
systems are build systems that watch various source control repositories for changes, run any
applicable tests, and automatically build the latest version of the application from each source
control change.

Advanced deployment patterns aim to reduce the risk of software releases and build an environment
for experimentation with controlled outcomes without unintended negative consequences for cus-
tomers. This goal is essential for increasing innovation across an organization.

Advanced deployment techniques change the nature of delivery from an off-hour weekend activity,
with service windows and downtimes, to a routine workday activity with zero downtime in production,
while the application is still available to the customers.

By removing the inconvenience of new deployment for the customers, these techniques let organiza-
tions deliver updates and releases at the frequency that business demands. The following are some
of the common deployment techniques that can be used to achieve zero-downtime deployment,
depending on the application use cases:

Rolling deployment is a pattern in which—instead of updating all instances of an application
at once—each instance is updated individually by excluding it from the load balancer so that
it does not receive traffic. It is updated and then included again in the load balancer. This
process continues until all instances are updated.

Blue-green deployment describes the practice of running two identical environments, one
active and the other idle. Changes are rolled out to the idle environment, then, once the
change is verified in production, the live traffic is switched to the updated environment.
Rolling back to the previous version is as simple as switching the traffic back, provided that
the data transition is also taken into consideration.

Canary deployment is similar to blue-green deployment in that it uses two identical
environments. However, it differs in the way rollout is controlled. After deploying a new
release, a small subset of customers is sent to the new release to test it in production. If the
new release verification succeeds, traffic is incrementally shifted to the new version while the
outcomes are monitored and verified until all users are sent to the new release.

“Advanced deployment
techniques bring

structure and clarity
to innovation.

Mature deployment
methodologies create

an environment that
allows true experimen-

tation, feedback, and
analysis. Better experi-

mentation leads to
better innovation.”

Burr Sutter
Director of Developer Experience,

Red Hat

http://linkedin.com/company/red
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/resources/cloud-native-development-outlook-whitepaper

8redhat.com E-book The path to cloud-native applications

Step 8: Evolve a more modular architecture

In a microservices-based architecture approach to writing software, applications are broken down
into their smallest components, independent from each other. Instead of a traditional, monolithic
approach where everything is built into a single piece, microservices are separated components that
work together to accomplish the same tasks. This approach to software development values granu-
larity, being lightweight, and sharing similar processes across multiple apps. Although a microser-
vices architecture does not impose a specific underlying infrastructure, a container-based platform
is an optimal foundation.

Evolving a microservices-based architecture might provide an extra benefit for very large teams
or organizations that conduct production deployments multiple times a day. From an architectural
standpoint, using microservices requires breaking out each service into its own deployment unit.
Each microservice is then managed and deployed independently, potentially with different teams
responsible for their life cycles.

Another alternative to microservices is miniservices. A miniservice is a collection of services that
are split by domain and usually run on an application server. Miniservices improve agility and scale
without the complexity of microservices-based design and infrastructure. Miniservices still require
an investment in agile, DevOps, and CI/CD approaches, making a modern application server or an
offering with multiple frameworks, architectures, and languages in combination with a container-
based infrastructure ideal.

A platform that supports different frameworks, languages, and approaches to cloud-native applica-
tion development (e.g., microservices, miniservices, or monolith-first) is key to success with cloud-
native applications.

How Red Hat can help

Whatever stage you are at within your cloud-native journey and your priorities, Red Hat has the tech-
nologies and services to support you.

Application services

Runtimes Integration Process
automation

Cloud
services

DevOps efficiencyDeveloper productivity

Open hybrid cloud

Physical Virtual Public cloud Private cloud

Designed for hybrid cloud environments

Figure 2. The cloud-native journey with Red Hat

http://linkedin.com/company/red

Copyright © 2021 Red Hat, Inc. Red Hat, the Red Hat logo, and OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries. Java and all Java based trademarks and logos are trademarks or registered trademarks
of Oracle America, Inc. in the U.S. and other countries.” If there’s no room, you may substitute “Java is a trademark of Oracle America, Inc.

North America
1 888 REDHAT1
www.redhat.com

About Red Hat
Red Hat is the world’s leading provider of enterprise open source software solutions, using a community-powered
approach to deliver reliable and high-performing Linux, hybrid cloud, container, and Kubernetes technologies.
Red Hat helps customers develop cloud-native applications, integrate existing and new IT applications, and
automate and manage complex environments. A trusted adviser to the Fortune 500, Red Hat provides award-
winning support, training, and consulting services that bring the benefits of open innovation to any industry.
Red Hat is a connective hub in a global network of enterprises, partners, and communities, helping organizations
grow, transform, and prepare for the digital future.

Europe, Middle East,
and Africa
00800 7334 2835
europe@redhat.com

Asia Pacific
+65 6490 4200
apac@redhat.com

Latin America
+54 11 4329 7300
info-latam@redhat.com

facebook.com/redhatinc
@RedHat
linkedin.com/company/red-hat

redhat.com
#F30307_1020

Some organizations may be focused on only one cloud-native use case, while others may be priori-
tizing a few use cases simultaneously. Whether you take an evolutionary or a revolutionary approach,
your path is highly individual and not necessarily linear. Whatever your path, getting applications to
market faster requires the right technology, DevOps practices, and culture.

Red Hat helps support this journey with Red Hat® OpenShift®, a cloud-native container development
and orchestration platform. Red Hat Application Services is a comprehensive portfolio for appli-
cation development that runs on Red Hat OpenShift. The Red Hat Application Services portfolio
includes frameworks, tools, and solutions for developing, deploying, and scaling cloud-native appli-
cations. If your organization needs to get to market faster, Red Hat OpenShift application services
(part of Red Hat Cloud Services) are hosted and managed cloud services for Red Hat OpenShift
that deliver a streamlined developer experience for developing, deploying, and scaling cloud-
native applications.

To help navigate the complexity of cloud-native development, Red Hat Consulting offers strategic
advice as well as in-depth technical expertise. From Red Hat Open Innovation Labs to discovery ses-
sions and project implementation plans, our consultants can help you on every step of your cloud-
native journey.

E-book

https://www.redhat.com/en/about/company?sc_cid=70160000000e5syAAA
https://access.redhat.com/recognition
https://access.redhat.com/recognition
mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/products/middleware
https://cloud.redhat.com/products/application-services
https://www.redhat.com/en/technologies/cloud-computing/openshift/managed-cloud-services
https://www.redhat.com/en/services/consulting
https://www.redhat.com/en/services/consulting/open-innovation-labs

