
Cloud-native application development is an approach to building 

and running applications. It speeds time to market by using the 

cloud computing model, which is based on these key tenets:

What is cloud-native application development?

Eight steps to

Cloud-native
application development

Container-based infrastructure
Uses containers as a common operational model 

across application technology stacks, offering 

portability, horizontal scaling, and automation with 

low overhead and high density.

Follows agile methodology, which builds and 

delivers applications collaboratively.

DevOps processes

Service-based architecture
Uses modular, loosely coupled services, such as 

microservices. Increases development speed 

without increasing complexity.

API-driven communication
Uses lightweight application programming 

interfaces (APIs) that reduce the complexity and 

overhead of deployment, scalability, and 

maintenance. Composes new business capabilities 

and opportunities with the exposed APIs.

8 steps Recommendations to help you succeed
in cloud-native application development

Learn more at
www.redhat.com/en/topics/cloud-native-apps

The path to cloud-native applications

Read the e-book

https://red.ht/CNADebook

Take advantage of new technology, faster 

approaches, and tighter collaboration by embracing 

the principles and cultural values of DevOps and 

organizing your organization around those values.

Evolve a DevOps culture
and practices

Step

01

Speed software development with reusability. 

Cloud-native application services are ready-to-use 

developer tools. However, these reusable 

components must be optimized and integrated into 

the underlying cloud-native infrastructure to 

maximize benefits. 

Use application services
to speed up development

Step

03

Accelerate existing applications by migrating to a 

modern, container-based platform—and break up 

monolithic applications into microservices or 

miniservices for additional efficiency gains. 

Speed up existing applications
using fast monoliths

Step

02

Use a container-based application platform that 

supports the right mix of frameworks, languages, 

and architectures—and can be tailored to your 

specific business application need. 

Choose the right tool
for the right task

Step

04
Spring Boot

Eclipse MicroProfile

Eclipse Vert.X

Dropwizard

Python

Apache OpenWhisk

Node.js

Golang

Jakarta EE

Microservices MiniservicesMonolith-first

Cloud-native/middleware 
application services 

Cloud-native/middleware 
application services 

Use containers and container orchestration technology 

to simplify access to underlying infrastructure, give 

control and visibility to IT operations teams, and 

provide robust application life-cycle management 

across various infrastructure environments, such as 

datacenters, private clouds, and public clouds.

Provide developers with self-service,
on-demand infrastructure

Step

05

Accelerate the delivery of your cloud-native 

applications with automated delivery, continuous 

integration/continuous delivery (CI/CD) pipelines, 

rolling blue/green and canary deployments, and 

A/B testing.

Implement continuous delivery and
advanced deployment techniques

Step

07

Lay the foundation for IT automation with:

Automate IT to accelerate
application delivery

Step

06
Automation sandboxes for learning the automation language and process.

Collaborative dialog across organizations for defining service requirements.

Self-service catalogs that empower users and speed delivery.

Metering, monitoring, and chargeback policies and processes.

Evolve a more
modular architecture

Step

08

Dev ContainerSource repository CI/CD engine

Physical Public cloudVirtual Private cloud

Choose a modular design that makes sense for your 

specific needs, using microservices, a monolith-first 

approach, or miniservices—or a combination. 

Container Container
orchestration

Self-service,
on-demand

infrastructure

www.redhat.com/en/topics/cloud-native-apps
https://red.ht/CNADebook

