JUNIPER CONNECTED SECURITY: DYNAMIC, ADAPTIVE MULTICLOUD SECURITY Evolving from firewall to user-intent policies for flexible security in the cloud #### Challenge Legacy security policies, which do not dynamically adapt to different security workflows, must be individually configured and managed for every possible deployment option (physical deployment, private cloud, and public cloud). #### Solution User intent-based policies that leverage unified metadata across deployment realms dynamically adapt to different security workflows, helping enterprises effectively handle the security challenges of the multicloud era. #### Benefits - Provides a single policy model across clouds - Simplifies management and user readability - Reduces operational expenses - Automates security coverage from endpoints to edge and every cloud in between - Offers best-in-class networking - Enables administrators to rapidly take corrective action under critical situations Because traditional firewall policies rely heavily on IP addresses, they are fairly ineffective in today's cloud-based world. To handle the security challenges of the multicloud era, enterprises must be able to adapt security policies dynamically across different workflows and deployment options, employing a single yet flexible multicloud policy model. When a network is under attack, the need to rapidly isolate the threat and take corrective action is critical. Juniper Networks offers just such a solution with its Connected Security framework. With powerful security workflows facilitated by dynamic access groups and a unified and intuitive metadatabased policy model that can be ported across clouds, Juniper Connected Security gives security admins complete command and control over their multicloud deployments. ### The Challenge Traditional firewall policies, which rely heavily on IP addresses, have not seen significant improvement in more than a decade. Unfortunately, these policies are not terribly effective in today's cloud-based world, where IP addresses are always changing as dynamic virtual instances are constantly being created and terminated. Furthermore, each environment has its own native elements such as security groups in Amazon Web Services (AWS) or VMware NSX, with tags that are hard to accommodate using traditional firewall policies, limiting business agility. Figure 1: Security policies need to be customized for each deployment realm To fully understand the impact this evolving environment will have on network security, it's important to first know how an application is deployed in an enterprise. Once an application is developed, the app team asks the infrastructure team to allocate the necessary resources. The infrastructure team begins building the infrastructure, including compute, storage, and network resources, and then asks the security team to allow these applications. The security team analyzes each application, creates new or modifies existing security policies as needed, and commits the changes. While this whole process can take anywhere from four to six weeks in a physical deployment, it can be accomplished in a matter of minutes in a cloud environment. In a highly distributed environment, however, where the infrastructure is spread across multiple clouds, it gets more complicated for security administrators tasked with reviewing the consistency of policies across the enterprise and committing the configuration changes. As the number of applications being deployed in a distributed system grows, the security team itself becomes an obstacle to business agility. Figure 2: Typical application deployment timeframes The static nature of security policy actions presents another challenge to responding effectively to different security workflows. With traditional firewall policies, when the network is under attack, the security admin must sift through literally thousands of rules, disabling unnecessary ones in order to isolate the source of the event. Similarly, security admins need to constantly experiment with policy settings to determine the best security posture for specific network performance conditions, switching between them based on business needs. Making these changes manually across a large rule base is time-consuming and extremely inefficient—not ideal in time-sensitive or repetitive situations. # The Juniper Networks User-Intent Policy Security Solution Juniper Networks addresses these challenges with a comprehensive security solution based on user-intent policies that features a metadata-based policy model and powerful dynamic policy action capabilities. Juniper Connected Security consists of the following components: Juniper Networks® SRX Series Services Gateways and vSRX Virtual Firewall with integrated next-generation firewall (NGFW) and unified threat management (UTM). These products deliver: - Core firewall functionality with IPsec VPN and featurerich networking services such as Network Address Translation (NAT) and routing - Intrusion prevention system (IPS) 2.0 to detect and block network intrusions - User-based firewalls to analyze, log, and enforce access control based on user roles and groups - Application control and visibility with integrated Juniper Networks AppSecure 2.0 to provide application-level analysis, prioritization, and blocking to safely enable applications - Antivirus, antispam, and Web and content filtering with UTM to protect against viruses, spam, and malicious URLs and content - Support for Linux KVM, VMware, AWS, and Azure platforms (vSRX) - Support for dynamic address groups to facilitate a "nocommit" architecture - Juniper Networks Junos Space® Security Director, which provides centralized, single-pane-of-glass management to deploy, monitor, and configure security features and policies across all SRX Series physical and vSRX virtual firewalls in the network. - Policy Enforcer, a component of Security Director, provides an additional level of centralized intelligence for deploying and enforcing security policies on multivendor network elements such as switches, routers, Wi-Fi access points, and the like. - With the introduction of user-intent policies, it also provides the ability to use metadata in security policies and take dynamic actions on security policies using the Dynamic Policy Actions (DPA) feature. - Security Director includes a customizable dashboard with detailed drill-downs, threat maps, and event logs, providing unprecedented visibility into network security measures. - It is also available as a mobile app for Google's Android and Apple's iOS systems to enable remote mobile monitoring. ### Metadata-Based Policy Model Metadata is defined as a dictionary of key value pairs gleaned from a list of possible values that associate attributes with endpoints. Most cloud deployments (VMware NSX, Juniper Contrail® Platform, Amazon AWS, etc.) use metadata native to their respective clouds. The ability to leverage metadata in security policies significantly enhances traditional security policies that already feature static identifiers such as IP addresses or address Figure 3: Metadata aggregation and feeds for dynamic address groups on SRX Series and vSRX NGFWs objects. By following common metadata-based tagging, the Policy Enforcer component of Security Director can configure all firewalls throughout the enterprise with the same policies—without requiring any major customization to make it cloud-compatible. A network or DevOps admin simply assigns the right metadata to an endpoint, and a preconfigured security policy can utilize it immediately. # Dynamic Address Groups on SRX Series and vSRX NGFWs Dynamic address groups on SRX Series physical and vSRX virtual NGFWs facilitate adaptive security policies—elements comprised of lists of IP addresses. Once a dynamic address group is used in a security policy, IP addresses can be added or removed without requiring a configuration commit—a tremendous benefit considering endpoint IP addresses change constantly due to the dynamic nature of creation and termination, and appending thousands of addresses is incredibly time-consuming. As an added benefit, the SRX Series and vSRX firewalls also dynamically populate and update IP addresses in the dynamic address group based on feeds from external sources. #### Metadata Mapping to Dynamic Address Groups Security Director Policy Enforcer serves as an aggregation server, learning the native metadata from different realms (Contrail, VMware NSX, AWS, etc.) and their IP associations. This information is then fed to the SRX Series and vSRX NGFWs in different realms, acting as a metadata feed server as well as a policy management system. When applications migrate from physical on-premise hardware to the cloud, the firewall in the cloud will use the metadata from the application endpoint to determine the right action for traffic moving to and from that endpoint. This facilitates a much smoother and agile workflow for migrating applications without compromising security. Using meaningful metadata also captures the user's intent, making endpoints easy to identify and work with in a security policy. The solution also introduces the ability to use logical operators in security policies, such as an "AND" and "OR" operation that can be performed on endpoint metadata. This level of flexibility simplifies the overall policy configuration. Figure 4: Metadata-based policy model For example, if configuring a source field for all endpoints with metadata "Type" as "DB" and metadata "PCI" as "no," it can be specified in the security policy's source or destination address. The following tables offer a quick glimpse of the possibilities available to admins to reduce the security burden on the enterprise and create a higher level of operational flexibility. The security policy using a static IP looks like this: | # | Source | Destination | Service | Firewall | IPS | |---|----------------------|-------------------------|---------|----------|------| | 1 | Web server
object | Database address object | http | Permit | None | The backend address object-to-static IP mapping looks like this (requires the security team): | #Address Object | Mapping | |-----------------|---------| | HR_SR_object | 1.1.1.1 | | SQL_FIN_OBJECT | 2.2.2.1 | When a new module needs to be added to an application, the DevOps or network admin provisions the necessary application and asks the security team to add the IP address to the allowed list. The administrator makes the necessary changes to the address object or static address and commits the configuration. Configuration commits are typically a time-consuming process, adding an additional layer of overhead. | # | Source | Destination | Service | Firewall | IPS | |---|----------|----------------------------|---------|----------|------| | 1 | PCI ==NO | TYPE == DB &&
PCI ==YES | Any | Deny | None | The metadata-to-address object mapping looks like this: | #Address
Object | IP
Mapping | Metadata
Deployment
Status | Metadata
PCI | Metadata
Type | |--------------------|---------------|----------------------------------|-----------------|------------------| | HR_SR_object | 1.1.1.1 | Production | No | Web | | SQL_FIN_
OBJECT | 2.2.2.1 | Production | Yes | DB | The security admin creates security policies based on metadata logic for the source and destination fields. When the DevOps or network admin provisions a new endpoint to the application, only the appropriate metadata needs to be associated with the new endpoint in order to deploy it in the application pool. Using security templates or predefined metadata-based policies approved by the security team can eliminate the 3-4 week process of configuring and committing configurations. This dramatically reduces application deployment times, ensures greater business agility, and significantly lowers OpEx. Similarly, endpoints can be removed from the application pool by simply deleting the associated metadata. ## **Dynamic Policy Actions** Security Director's Policy Enforcer includes a Dynamic Policy Action (DPA) feature based on configurable global NetSec environmental variables that allow preconfigured security policies to take different actions under various conditions. This facilitates a proactive approach to threat response. The ability to take alternative actions across a large set of policies dramatically simplifies the security posture, allowing the system to dynamically adjust its response under different attack conditions. When a network is under attack, the need to rapidly isolate the threat and take corrective action is critical. A typical workflow requires security admins to manually disable all noncritical business applications until a diagnosis is made. In a normal enterprise, there could be thousands of security policies governing noncritical applications such as video or audio streaming, private e-mails, and mobile apps. If the network is believed to be under attack, using a DPA can allow a single NetSec variable to perform customized policy actions on a large set of policies to protect the infrastructure. Similarly, when optimizing security policy settings for performance and security or mode-switch to prioritize one application over another, DPA achieves this with a single NetSec variable change. For example, a security admin could set a NetSec variable to skip additional IPS settings on internal traffic when large data backups occur, switching back to "Full Security" mode once the backup is complete. Admins could also create an "Experimental" mode to find the right balance between security and performance settings, then preconfigure the policies to take appropriate actions based on this setting. These fast-switch workflows not only allow security teams to easily collaborate with other groups throughout the organization, it also allows security admins to respond effectively in high-pressure situations. Figure 5: Reduced application deployment timeframes with metadata-based policy | Firewall Rule Set | | | | | | | | |-------------------|-------------|-------------------|---------|----------|---------------------|--|--| | | Src | Dest | Service | Firewall | IPS | | | | m | Empl | Internet
Video | http | Permit | None | | | | n | Web
Zone | DB
Zone | DB | Permit | Std_IPS_
Profile | | | | Z | Any | Any | Any | Deny | | | | | Custo | Customer-Defined Environment Variables | | | | | | | | |--------|--|--------|-----------------|-----------------------|---|-----|---------------|---| | Env | | Туре | Possible Values | | Default Value | | Current Value | | | Threa | at Level | String | Lo | Low, Medium, High Low | | Low | | High | | Rule / | Rule Actions Based on Variable Values | | | | | | | | | # | | Dest | | Service | | | IPS | | | m | Empl | Intern | | http | If (ThreatLevel=
High) Deny
Else Permit | | None | | | n | WebZon | e DBZo | ne | DB | Permit | | Adv_p | reatLevel=High)
orofile
otd_Profile | Figure 6: Metadata aggregation and feeds for a dynamic access group on SRX Series and vSRX NGFWs #### Features and Benefits The Juniper intent-driven policy solution delivers the following features and benefits: - Ensures agile application deployments by eliminating the need for manual configuration changes and commits - Reduces operational expenses - Improves user readability and flexibility when using metadata logic in security policies - Allows security policies to be ported across different realms, including physical data centers, private clouds, and public clouds - Dynamically adapts to network threat levels, facilitating efficient debugging and threat isolation workflows # Summary—Juniper Delivers Connected Security for the Multicloud Era By supporting advanced L4-L7 security features such as user firewall, application firewall, and IPS, coupled with powerful underlying features such as dynamic access group to facilitate a "no-commit" architecture, the SRX Series Services Gateways and vSRX Virtual Firewalls deliver the ideal cloud-ready NGFW. With the powerful security workflows facilitated by dynamic access groups, and a unified and intuitive metadata-based policy model that can be ported across clouds, Juniper's Connected Security user-intent policy solution gives security admins complete command and control over their multicloud deployments. #### **Next Steps** For more information about Juniper Networks security solutions, please visit us at www.juniper.net/us/en/products-services/ security or contact your Juniper Networks sales representative. ## **About Juniper Networks** Juniper Networks brings simplicity to networking with products, solutions and services that connect the world. Through engineering innovation, we remove the constraints and complexities of networking in the cloud era to solve the toughest challenges our customers and partners face daily. At Juniper Networks, we believe that the network is a resource for sharing knowledge and human advancement that changes the world. We are committed to imagining groundbreaking ways to deliver automated, scalable and secure networks to move at the speed of business. #### Corporate and Sales Headquarters Juniper Networks, Inc. 1133 Innovation Way Sunnyvale, CA 94089 USA Phone: 888.JUNIPER (888.586.4737) or +1.408.745.2000 Fax: +1.408.745.2100 www.juniper.net #### **APAC and EMEA Headquarters** Juniper Networks International B.V. Boeing Avenue 240 1119 PZ Schiphol-Rijk Amsterdam, The Netherlands Phone: +31.0.207.125.700 Fax: +31.0.207.125.701 **Engineering**Simplicity Copyright 2019 Juniper Networks, Inc. All rights reserved. Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners. Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice. 3510634-003-EN Feb 2019 5