
Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

1The Parallel Universe

David Liu, Software Technical Consulting Engineer, and Anton Malakhov, Software Development 
Engineer, Intel Corporation

Python* as a programming language has enjoyed nearly a decade of usage in both industry and academia. This 

high-productivity language has been one of the most popular abstractions to scientific computing and machine 

learning, yet the base Python language remains single-threaded. Just how is productivity in these fields being 

maintained with a single-threaded language?

The Python language’s design, by Guido van Rossum, was meant to trade off type flexibility and predictable, 

thread-safe behavior against the complexity of having to manage static types and threading primitives. This, 

in turn, meant having to enforce a global interpreter lock (GIL) to limit execution to a single thread at a time to 

preserve this design mentality. Over the last decade, many concurrency implementations have been made for 

Python―but few in the region of parallelism. Does this mean the language isn’t performant? Let’s explore further.

Dispelling the Myths with Tools to Achieve Parallelism

Parallelism in Python*



Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

2The Parallel Universe

The base language’s fundamental constructs for loops and other asynchronous or concurrent calls all 

abide by the single-threaded GIL, so even list comprehensions such as [x*x for x in range(0,10)] 

will always be single-threaded. The threading library’s existence in the base language is also a bit 

misleading, since it provides the behavior of a threading implementation but still operates under the GIL. 

Many of the features of Python’s concurrent futures to almost-parallel tasks also operate under the GIL. 

Why does such an expressive productivity language restrict the language to these rules?

The reason is the level of abstraction the language design adopted. It ships with many tools to wrap 

C code, from ctypes to cffi. It prefers multiprocessing over multithreading in the base language, as 

evidenced by the multiprocessing package in the native Python library. These two design ideas are 

evident in some of the popular packages, like NumPy* and SciPy*, which use C code under the Python 

API to dispatch to a mathematical runtime library such as Intel® Math Kernel Library (Intel® MKL) or 

OpenBLAS*. The community has adopted the paradigm to dispatch to higher-speed C-based libraries, 

and has become the preferred method to implement parallelism in Python.

In the combination of these accepted methods and language limitations are options to escape them 

and apply parallelism in Python through unique parallelism frameworks: 

•• Numba* allows for JIT-based compilation of Python code which can also run LLVM*-based Python-
compatible code. 

•• Cython* gives Python-like syntax with compiled modules that can target hardware vectorization as it 
compiles to a C module. 

•• numexpr* allows for symbolic evaluation to utilize compilers and advanced vectorization. 

These methods escape Python’s GIL in different ways while preserving the original intent of the 

language, and all three implement different models of parallelism. 

Let’s take the general example of one of the most common language constructs on which we’d want 

to apply parallelism—the for loop. Looking at the loop below, we can see that it provides a basic 

service, returning all the numbers less than 50 in a list:



Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

3The Parallel Universe

Running this code gives the following result:

Python handles the list of items in a single-threaded way under the GIL, since it’s written in pure Python. 

Thus, it handles everything sequentially and doesn’t apply any parallelism to the code. Because of the way 

this code is written, it’s a good candidate for the Numba framework. Numba uses a decorator (with the @ 

symbol) to flag functions for just-in-time (JIT) compilation, which we’ll try to apply on this function:

Running this code now gives the following result:

Including this simple decorator nearly doubled performance. This works because the original Python 

code is written in primitives and datatypes that can be easily compiled and vectorized to a CPU. Python 

lists are the first place to look. Normally, this data structure is quite heavy with its loose typing and built-in 

allocator. However, if we look at the datatypes that random_list contains, they’re all integers. Because 

of this consistency, the JIT compiler of Numba can vectorize the loop.



Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

4The Parallel Universe

If the list contains mixed items (e.g., a list of chars and ints), the compiled code will throw a TypeError 

because it can’t handle the heterogeneous list. Also, if the function contains mixed datatype operations, 

Numba will fail to produce a high-performance JIT-compiled code and will fall back to Python object code. 

The lesson here is that achieving parallelism in Python depends on how the original code is written. 

Cleanliness of datatypes and the use of vectorizable data structures allow Numba to parallelize code with 

the insertion of a simple decorator. Being careful about the use of Python dictionaries pays dividends, 

because historically they don’t vectorize well. Generators and comprehensions suffer from the same 

problem. Refactoring such code to lists, sets, or arrays can facilitate vectorization.

	

Parallelism is much easier to achieve in numerical and symbolic mathematics. NumPy and SciPy do a great 

job dispatching the computation outside of Python’s GIL to lower-level C code and the Intel MKL runtime. 

Take, for example, the simple NumPy symbolic expression, ((2*a + 3*b)/b), expressed below:

This expression makes multiple trips through the single-threaded Python interpreter because of the 

structure and design of NumPy. Each return from NumPy is dispatched to C and returned back to the 

Python level. Then, the Python object is sent to each subsequent call to be dispatched to C again. This 

back-and-forth jumping becomes a bottleneck in the computation, so when you need to compute custom 

kernels that can’t be described in NumPy or SciPy, numexpr is a better option:



Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

5The Parallel Universe

How does numexpr achieve nearly a 4x speedup? The previous code takes the symbolic representation 

of the computation into numexpr’s engine to generate code that works with the vectorization 

commands from the vector math library in Intel MKL. Thus, the entire computation stays in low-level 

code before completing and returning the result back to the Python layer. This method also avoids 

multiple trips through the Python interpreter, cutting down on single-threaded sections while also 

providing a concise syntax.

By looking at the Python ecosystem and evaluating the different parallelism frameworks, it’s evident that 

there are good options. To master Python parallelism, it’s important to understand the tools and their 

limitations. Python chose the GIL as a design consideration to simplify framework development and give 

predictable language behavior. But, at the end of the day, the GIL and its single-threaded restrictions are 

easy to sidestep with the right tools.

Learn More
•• Intel® Distribution for Python
•• Intel® Math Kernel Library

Blog Highlights

Read more >

10 Huge Benefits of Edge AI & the Software Tools to Deliver Them
CHARLOTTE DRYDEN, INTEL CORPORATION

Artificial Intelligence (AI) continues to show up in our everyday lives, but its presence is gentle and 
welcome, largely due to the advancements in Edge AI. Many AI use cases are best suited for the 
edge where processing happens at or close to the data source, lowering costs, reducing application 
or service latency, improving reliability and increasing data privacy.

Whether we realize it or not, Edge AI technologies—seen and unseen—provide huge benefits 
in a world that’s digitally connected, 24x7. This rapid advancement of Edge AI is not because of 
one or two “killer apps”—new solutions and usages continue to emerge all the time.


