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3The Parallel Universe

Celebrating 20 Years of OpenMP*

The OpenMP* application programming interface turns 20 this year. To celebrate, we tapped Michael Klemm  
(the current CEO of the OpenMP Architecture Review Board, or ARB) and some of his colleagues to give an 
overview of the newest features in the specification―particularly, enhancements to task-based parallelism  
and offloading computations to specialized accelerators. 

Our feature article covers “The Present and Future of the OpenMP API Specification,” so I’ll say a little about its 
past. I half-jokingly refer to the early to mid-1990s as the “bad old days” of high-performance computing (HPC). 
There were many, many different parallel programming models and parallel architectures dotting a fast-changing 
HPC landscape. For distributed-memory architectures, there were low-level, message-passing methods like 
SHMEM, high-level, methods like PVM or MPI, and even higher levels of abstraction with High Performance Fortran 
and Unified Parallel C. For shared-memory architectures, there were low-level threading methods like Pthreads 
or higher-level compiler-directed threading. One thing was clear: There were no magic compilers that could 
automatically parallelize real applications. Parallel compiler directives were the next best thing.

For those of us who remember parallel compiler directives before OpenMP, there were many vendor-specific 
sets to choose from (e.g., Cray, SGI, Intel, Kuck and Associates, Inc.), each doing the same thing but with different 
syntaxes. In exasperation, several large governmental HPC facilities demanded a unified syntax for parallel 
compiler directives. 

OpenMP was born in 1997. Most of the original vendors are still on the ARB, and many more members have been 
added since (the ARB currently has 29 members). It remains the gold standard for portable, vendor-neutral parallel 
programming directives because it never lost sight of its original purpose. 

Today, MPI and OpenMP cover most application requirements in HPC. There are still challenges. Memory 
subsystems are as unbalanced as ever, different processor architectures now commonly exist within the same 
system, and keeping data coherent among these different processing elements is an additional burden on the 
programmer. But MPI and OpenMP continue to evolve with these challenges, so the HPC future looks bright.

3The Parallel Universe

Henry A. Gabb, Principal Engineer at Intel Corporation, is a long-time high-performance and parallel computing 
practitioner and has published numerous articles on parallel programming. He was editor/coauthor of “Developing 
Multithreaded Applications: A Platform Consistent Approach” and was program manager of the Intel/Microsoft 
Universal Parallel Computing Research Centers. 
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New Tools for Tuning Serial Performance

Parallelism is great, but would you parallelize code that has not been properly tuned? No, you wouldn’t.  
So this issue of The Parallel Universe also looks at tuning serial performance. My first supercomputer was  
a Cray X-MP, so I learned early the importance of vectorization. “Vectorization Opportunities for Improved 
Performance with Intel® AVX-512” gives a good overview of tuning code with the new Intel AVX-512 instruction 
set and shows how to use these instructions to expose vectorization opportunities that were not previously 
possible. The new Intel® Advisor Roofline and Intel® VTune™ Amplifier Memory Analysis features help visualize 
performance optimization tradeoffs and how memory access is affecting an application’s performance. These 
features are demonstrated in “Intel® Advisor Roofline Analysis” and “Identify Scalability Problems in Parallel 
Applications.” We round out this issue with tips for optimizing general matrix-matrix multiplication operations 
in the Intel® Math Kernel Library (“Reducing Packing Overhead in Matrix-Matrix Multiplication”) and a brief 
overview of Intel software support for machine learning (“Intel-Powered Deep Learning Frameworks”).

Hello, I’m New Here

Finally, I’d like to introduce myself as the new editor of The Parallel Universe. I’ve been doing HPC since  
about 1990, but I was originally doing research in computational life science. Each successive research project 
required more computing power. To stay relevant, I had to learn about performance tuning and parallel 
programming. My academic background is in biochemistry and genetics, so I resented the intrusion of computer 
science into my scientific domain. But my initial resistance gave way to fascination when I saw how HPC could 
change my research and make it possible to answer new and bigger research questions. Hardware and software 
advances allow me to quickly run simulations on my laptop that once took days on a circa 1995 supercomputer.  
I used to dread the heterogeneous parallel computing future. Now, I welcome it with the same fascination I had 
as a young graduate student.

Henry A. Gabb 
January 2017
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The PresenT and FuTure oF The 
oPenMP* aPI sPecIFIcaTIon
How the Gold Standard Parallel Programming Language  
Has Improved with Each New Version

There are two decades of history associated with the OpenMP* API and, since its inauguration, 
OpenMP features have been added to keep up with developments in hardware and software to 
ensure that you can use it to program the hardware that you have. Since the release of version 
4.0 in 2013, the OpenMP language has supported heterogeneous and SIMD programming. 
Similarly, support for programs with irregular parallelism was improved in 2008 with the addition 
of tasking constructs. OpenMP Technical Report 4: Version 5.0 Preview 1 (TR4 for short) is the 
next step in the evolution of the OpenMP language. It adds task reductions, extends SIMD parallel 
programming, and considerably extends the productivity of heterogeneous programming. In this 
article, we review existing OpenMP features and provide a preview of what will be coming soon  
in implementations supporting TR4.
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6The Parallel Universe

Tasking: Express Yourself with Tasks
Tasking, or task-based programming, is an important concept for applications that require 
irregular parallelism (e.g., recursive algorithms, graph traversals, and algorithms operating  
on unstructured data). Since OpenMP version 3.0, the task construct has provided a convenient 
way to express the concurrent execution of small units of work that are handed to a scheduler  
in the OpenMP runtime system. 

Figure 1 illustrates the creation of an OpenMP task to execute a long-running function and then 
a loop that has been parallelized using the taskloop construct. This construct appeared with 
OpenMP 4.5 and provides syntactic sugar to allow programmers to easily parallelize loops using 
OpenMP tasks. It divides the loop iteration space into chunks and creates one task for each 
chunk. The construct supports several clauses to allow fine control (e.g., grainsize to control 
the amount of work per task and collapse to create a product loop out of the i and j loops). 
TR4 extends the expressiveness of OpenMP tasks by defining new clauses for the taskgroup, 
task, and taskloop constructs to perform reductions across the generated tasks.

Figure 2 illustrates the creation of tasks to process a linked list and find the minimum value of 
all elements in the list. The parallel construct creates a parallel region to have worker threads 
available for task execution. The single construct then restricts execution to one thread that 
traverses the linked list and generates one task for each list item via omp task. This is a common 
way to implement a producer-consumer pattern in OpenMP.

Task reductions in TR4 use the taskgroup construct that was introduced in OpenMP version 
4.0. It was designed to group tasks logically and to provide a way to await completion of all the 
tasks in the group. TR4 extends the taskgroup construct to perform reductions through the 
task_reduction clause, as illustrated in Figure 2. If this clause is added to the construct,  
all partial results gathered by the individual tasks are aggregated to form the final result at  
the end of the taskgroup region. Tasks that contribute to the reduction operation must have  
an in_reduction clause that matches the reduction clause of their taskgroup.

void taskloop_example() {
#pragma omp taskgroup
    {
#pragma omp task
        long_running_task()  // can execute concurrently

#pragma omp taskloop collapse(2) grainsize(500) nogroup
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++)
                loop_body();

    
1   Simple example using the new taskloop construct together with an OpenMP* task

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/articles/optimization-notice#opt-en


Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 
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Starting with TR4, the taskloop construct supports the reduction and in_reduction 
clauses with their task reduction semantics. If a reduction clause appears on the taskloop 
construct, an implicit task group is created, which performs the requested reduction operation at 
the end of the loop. If an in_reduction clause is added, the tasks generated by the taskloop 
construct participate in the reduction of an outer taskgroup region.

Offloading: Making the Most of Coprocessors
The OpenMP API strives to improve the usability of offloading pragmas based on user feedback. 
To that end, new features have been added to TR4 and some existing features have been 
enhanced. One of the key new features is the ability to automatically detect functions used in 
offload regions and treat them as if they appeared in a declare target directive. Previously, 
all functions called in an offload region had to be explicitly tagged using declare target 
directives. This was hard work, especially if the routines were in header files not owned by 
the programmer (e.g., the Standard Template Library), and would require declare target 
directives on the header file itself, which would create a copy of every function in the header file 
for the device even if some functions were not used in the offload region. 

int find_minimum(list_t * list) {
    int minimum = INT_MAX;
    list_t * ptr = list;
#pragma omp parallel 
#pragma omp single
#pragma omp taskgroup task_reduction(min:minimum)
    {
        for (ptr = list; ptr ; ptr = ptr->next) {
#pragma omp task firstprivate(ptr) in_reduction(min:minimum)
            {
                int element = ptr->element;
                minimum = (element < minimum) ? element : minimum;
            }
        }
    }
    return minimum;
}

    
2   Traversing a linked list and computing the minimum using task reductions
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In Figure 3, the code on the left shows what was required in OpenMP version 4.5. Starting  
with TR4, the code on the right side is sufficient due to the implicit detection and creation  
of the device function.

Automatic detection also extends to variables with static storage duration in TR4. The examples  
in Figure 4 are equivalent.

OpenMP version 4.5 introduced the use_device_ptr clause. The variable in use_device_ptr 
must be mapped before it can be used. To achieve this, the programmer would need to use a 
separate #pragma target data clause, as a variable can appear in only one data clause.  
Thus, the OpenMP directives in Figure 5 are needed.

#pragma omp declare target
void foo() {
    // ...
}
#pragma omp end declare target

void bar()  {
#pragma omp target
    {
        foo();
    }
}

void foo() {
    // ...
}

void bar() {
#pragma omp target
    {
        foo();
    }
}

int x;
#pragma omp declare target to (x)

void bar() {
    #pragma omp target
    {
        x = 5;
    }
}

int x;

void bar() {
    #pragma omp target
    {
        x = 5;
    }
}

    
3   Automatically detect functions used in offload regions

    
4   Automatic detection for variables with static storage duration 
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9The Parallel Universe

In TR4, an exception has been made so that the variable can appear in both the map and  
use_device_ptr clauses in a single construct, as shown in Figure 6.

Static data members are now permitted in a class inside an omp declare target construct.  
Class objects with static members can also be used in a map clause (Figure 7).

In addition, virtual member functions are allowed in classes inside an omp declare target 
construct or objects used in a map clause. The only caveat is that the virtual member functions 
can be invoked only on a device if the object is created on the same device.

In OpenMP 4.5, scalar variables used in a reduction or lastprivate clause on a combined 
construct for which the first construct is target are treated as firstprivate for the target 
construct. That results in the host value never being updated, surprisingly. To update the value on 
the host, the programmer had to separate the omp target directive from the combined construct 
and explicitly map the scalar variable. In TR4, such variables are automatically treated as if they 
had a map(tofrom:variable) applied to them.

#pragma omp target data map(buf)
#pragma omp target data use_device_ptr(buf)

#pragma omp target data map(buf) use_device_ptr(buf)

#pragma omp declare target
class C {
    static int x;
    int y;
}
class C  myclass;
#pragma omp end declare target

void bar() {
#pragma omp target map(myclass)
    {
        myclass.x = 10
    }
}

    
5   Mapping the variable

    
6   Variable can appear in both the map and use_device_ptr clauses

    
7   Class objects with static members used in a map clause
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If a section of a named array is mapped using omp target data, any nested omp target inside 
the omp target data construct that references the array would require an implicit mapping to 
either the same section or a subsection of the array used in the outer omp target data map 
clause. If the explicit mapping is omitted on the inner omp target region, the implicit mapping 
rule kicks in, which would imply that the entire array is mapped according to OpenMP version  
4.5. This would result in a runtime error from mapping a larger-sized array when a subsection  
of the array is already mapped. Similarly, mapping a field of a structure variable in the outer  
omp target data construct and using the address of the structure variable inside a nested 
omp target construct would result in an attempt to map the entire structure variable when part of 
the structure is already mapped. TR4 has fixed these cases to give the behavior that programmers 
typically expect (Figure 8).

The new features in TR4 improve the programmability of offloading using OpenMP, requiring 
fewer modifications to the application. The automatic detection of variables and functions 
used in target regions removes the need for explicit specification. Similarly, the elimination 
of the need to repeat map clauses inside nested regions and allowing variables to appear 
in both map and use_device_ptr reduces the number of OpenMP directives required. 
The changes to the behavior of reduction variables aligns the language with programmer 
expectations. Overall, the cleaner semantics make the use of offload devices within OpenMP 
applications simpler and more intuitive.

struct {int x,y,z} st; 
int A[100]; 
#pragma omp target data map(s.x A[10:50]) 
{
#pragma omp target 
    {
        A[20] = ;       // error in OpenMP 4.5, Ok in TR4 
        foo(&st);       // error in OpenMP 4.5, OK in TR4
    }
#pragma omp target map(s.x, A[10:50]) 
    {
        A[20] = ;       // Ok OpenMP 4.5 and TR4 
        foo(&st);       // Ok OpenMP 4.5 and TR4
    }
}

    
8   Improved mapping
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11The Parallel Universe

Efficient SIMD Programming

SIMD Loops with Cross-Iteration Dependencies
OpenMP version 4.5 extends the ordered construct by adding a new simd clause. The 
ordered simd construct declares that a structured block in the SIMD loop or SIMD function 
must be executed in iteration order or in the order of function calls, respectively. Figure 9 shows 
the use of the ordered simd block to preserve read-write, write-read, and write-write ordering 
within each iteration and among iterations, while the entire loop can be executed concurrently 
using SIMD instructions. In the first ordered simd block, the index ind[i] of array a may 
have a write-write conflict (e.g., ind[0] = 2, ind[2] = 2), so it needs to be serialized by 
the ordered simd to allow vectorization of the entire loop. In the second ordered simd 
block, the myLock(L) and myUnlock(L) operations must be in a single ordered simd 
block. Otherwise, as part of the loop vectorization (e.g., for a vector length of two), the calls 
to myLock(L) and myLock(L) will be expanded to two calls as follows: {myLock(L); 
myLock(L); …; myUnlock(L); myUnlock(L);}. Nesting the lock functions will typically 
result in a deadlock. The ordered simd construct shown in the example creates the proper 
sequence {myLock(L); …; myUnlock(L); …; myLock(L); myUnlock(L);}.

When using the simd clause on the ordered construct, caution is required to not violate 
inherent dependencies between two ordered simd blocks. Figure 9 shows incorrect uses of 
#pragma omp ordered simd, as the order of stores is changed under SIMD execution with 
respect to its serial execution. Assume c[0] = true and c[1] = true. When the above 
loop is executed serially, the order of stores is: q[0] = b[0], q[1] = d[0], q[2] = 
b[1], q[3] = d[1], and so forth. However, when the loop is executed concurrently with a 

#pragma omp simd
for (i = 0; i < N; i++) {
    // ...
#pragma omp ordered simd
    {
        // write-write conflict
        a[ind[i]] += b[i]; 
    }
    // ...
#pragma omp ordered simd
    {
       // atomic update 
       myLock(L)          
       if (x > 10) x = 0;
       myUnlock(L)
    }
    // ...
}

#pragma omp simd
for (i = 0; i < N; i++) {
    // ...
#pragma omp ordered simd  
    {
        if (c[i]) > 0) q[j++] = b[i];    
    }
    // ...
#pragma omp ordered simd
    {                     
        if (c[i] > 0) q[j++] = d[i];                   
    }
    // ...
}

    
9   Preserving read-write, write-read, and write-write ordering within each iteration and among iterations 
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vector length of two, the order of stores is: q[0] = b[0], q[1] = b[1], q[2] = d[0], 
q[3] = d[1], ... The change in store ordering is due to a violation of the write-to-read 
dependency on the variable j between the two ordered simd blocks in the loop. The correct 
use is to merge the two ordered simd blocks into a single ordered simd block. 

REF/UVAL/VAL Modifier Extensions to the Linear Clause
The linear clause provides a superset of the functionality provided by the private clause. 
When a linear clause is specified on a construct, the value of the new list item on each iteration 
of the associated loop(s) corresponds to the value of the original list item before entering the 
construct, plus the logical number of the iterations multiplied by the linear step. The value 
corresponding to the sequentially last iteration of the associated loop(s) is assigned to the  
original list item. When a linear clause is specified on a declarative directive, all list items 
must be formal parameters (or, in Fortran, dummy arguments) of a function that will be invoked 
concurrently on each SIMD lane. 

The rationale behind adding ref/uval/val modifiers to the linear clause is to provide a way 
for programmers to precisely specify the linear or uniform property of memory references 
with respect to address and data value so the compiler can leverage the information to generate 
efficient SIMD code using unit-stride loads/stores instead of gathers/scatters. Essentially, for 
implicitly referenced linear arguments, it would be better to have reference as linear. The 
 semantics of uval/val/ref is described as:  

 • linear(val(var):[step]) indicates that the value is linear even if the var is passed by its reference. 
The vector of addresses is passed for passed by reference. In this case, the compiler must generate 
gathers or scatters. 

 • linear(uval(var):[step]) indicates that the value passed by reference is linear while the reference 
itself is uniform. So the reference to the first lane is passed, but other values can be constructed using 
step. The compiler can use general-purpose registers to pass the base address  
and compute its linear value. 

 • linear(ref(var):step) indicates that the parameter is passed by reference, the underlying 
reference is linear, and the memory access will be linear unit-stride or nonstrided depending on step.  
The compiler can use general-purpose registers to pass the base address and compute its linear address. 

Figure 10 shows a function FOO with arguments X and Y, which are pass-by-reference in  
Fortran. The “VALUE” attribute does not change this behavior. It says only that the updated  
value will not be visible to the caller per the Fortran 2008 language specification. Since  
the references of X and Y are not annotated as linear, the compiler must generate gather 
instructions to load (X0, X1, X2, X3) and (Y0, Y1, Y2, Y3), assuming the vector length is four.  
In Figure 11, the references to X and Y are annotated as linear, so the compiler can generate  
unit-stride SIMD loads for much better performance.
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13The Parallel Universe

 
In Figure 12, the function add_one is annotated as a SIMD function. It has a C++ 
reference argument const int &p. Assuming a vector length of four, if p is annotated as 
linear(ref(p)), the compiler can generate the unit-stride load instruction with the base 
address p in the rax register to load p[0], p[1], p[2], and p[3] to the xmm0 register.  
In that case, the add_one function requires only three instructions.

      REAL FUNCTION FOO(X, Y)
!$omp declare simd(FOO)  
      REAL, VALUE :: Y    !! pass by reference 
      REAL, VALUE :: X    !! pass by reference
      FOO = X + Y         !! gathers generated
                          !! based on vector 
                          !! of addresses  
      END FUNCTION FOO
      ! ... 
!omp$ simd private(X,Y)
      DO I= 0, N
        Y = B(I)
        X = A(I)
        C(I) += FOO(X, Y)
      ENDDO

      REAL FUNCTION FOO(X, Y)
!$omp declare simd(FOO) linear(ref(X), ref(Y))
      REAL, VALUE :: Y    !! pass by reference
      REAL, VALUE :: X    !! pass by reference 
      FOO = X + Y         !! unit stride 
                          !! SIMD loads
      END FUNCTION FOO
      ! ...
!omp$ simd private(X,Y)
      DO I= 0, N
        Y = B(I)
        X = A(I)
        C(I) += FOO(X, Y)
      ENDDO

#pragma omp declare simd notinbranch // linear(ref(p))
__declspec(noinline)
int add_one(const int& p) {
    return (p + 1);
}

    
10   Linearity of reference X and Y is unknown at compile time

    
11   References to X and Y annotated as linear

    
12   SIMD code comparison with and without linear(ref(p)) annotation
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However, if p is not annotated as linear(ref(p)), the compiler has to assume that four 
different addresses p0, p1, p2, and p3 are passed in via two xmm registers, and the gather 
operation is emulated with a sequence of scalar load and packing instructions. As a result,  
the add_one function now requires 16 instructions rather than three.

Overall, the additional SIMD features in OpenMP version 4.5 allow the user to provide more 
information to the compiler, which allows vectorization of more loops and the generation  
of better vector code in many circumstances.

Affinity: Thread Placement Made Easy
The OpenMP version 4.0 specification gave users a standard way to control thread affinity  
for the first time. It introduced two new concepts to the language:

1. Binding policy

2. Place partition

The binding policy, specified by the bind-var Internal Control Variable (ICV), determines  
where the threads of a team will be bound relative to the parent thread’s place. The place 
partition, specified by the place-partition-var ICV, is the set of places to which threads  
can be bound. Once a thread is bound to a place for a given team, it should not be moved  
from that place.

There are three binding policies defined by the specification: master, close, and spread.  
In describing these policies, we will consider a set of four places, each one a core with two 
threads. We will show examples of placing three threads and six threads on those places,  
and we assume that the parent thread will always be on the third place. In the master policy,  
the master thread is bound to the parent thread’s place, and then the remaining threads in the 
team are assigned to the same place as the master thread (Table 1).

    
Table 1. Thread placement for the master policy

Place 1: {0,1} Place 2: {2,3} Place 3: {4,5} (parent) Place 4: {6,7}

Three threads 0, 1, 2

Six threads 0, 1, 2, 3, 4, 5
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The close policy starts by placing the master thread on the parent thread’s place, and then 
proceeds in a round-robin fashion with the remaining threads in the team. To place T threads on 
P places, the master’s place gets roughly the first T/P threads, then the next place in the place 
partition gets the next T/P threads, and so on, wrapping around in the place partition as needed, 
giving a distribution (Table 2).

With the spread policy, things get very interesting. The placement of threads will be such that 
they are spread out over the available places. This is accomplished by forming T roughly even 
subpartitions of the place partition, or P partitions if T >= P. If T <= P, each thread gets its own 
subpartition, starting with the master thread, which will get the subpartition containing the place 
to which the parent thread is bound. Each subsequent thread is bound to the first place in each 
subsequent subpartition, wrapping around as needed. If T > P, sets of consecutive threads get 
the same subpartition, which in this case will consist of a single place. Thus, all the threads in the 
set will be bound to the same place. We show the subpartitions formed in Table 3 in curly braces. 
These are important if nested parallelism is used, since they affect the available resources used  
by each nested parallel region.

OpenMP version 4.0 also provides a query function for the thread affinity binding policy:  
omp_proc_bind_t omp_get_proc_bind(). It returns the binding policy to be used in  
the next parallel region (assuming that no proc_bind clause is specified on that region).

Place 1: {0,1} Place 2: {2,3} Place 3: {4,5} (parent) Place 4: {6,7}

Three threads 2 0 1

Six threads 4 5 0,1 2,3

Place 1: {0,1} Place 2: {2,3} Place 3: {4,5} (parent) Place 4: {6,7}

Three threads 1 {{0,1}} 2 {{2,3}} 0 {{4,5},{6,7}} Note: 0 is bound to {4,5}

Six threads 4 {{0,1}} 5 {{2,3}} 0,1 {{4,5}} 2,3 {{6,7}}

Table 2. Thread placement for the close policy

Table 3. Thread placement and subpartitions for the spread policy
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What is really interesting about the spread policy is what happens with the subpartition. With 
the master and close policies, each implicit task inherits the place partition of the parent 
implicit task. But, in the spread policy, implicit tasks get their place-partition-var ICV set 
to the subpartition instead. This means that a nested parallel construct will have all of its 
threads placed within the subpartition of its parent. 

The value of bind-var can be initialized via the environment variable OMP_PROC_BIND. 
The value of bind-var can also be overridden by the addition of a proc_bind clause to 
a parallel construct. Specifying the place-partition-var is accomplished via the 
OMP_PLACES environment variable. Places can be hardware threads, cores, sockets, or specific 
quantities of those. They can also be explicit processor lists. More details can be found in the 
OpenMP API specification.

The OpenMP 4.5 specification enhanced the language’s affinity capabilities by providing a set 
of functions capable of querying aspects of the place partition and binding place of the current 
thread. These new API functions are useful for confirming the correctness of the settings 
to achieve the programmer’s desired thread affinity. This is particularly important when the 
complexity of the code is high and nested parallelism is used in conjunction with the spread 
binding policy to place threads in nested parallel regions such that they share lower-level caches. 
These API functions are:

 • int omp_get_num_places(): Returns the number of places in the place-partition-var in the 
execution environment of the initial task.

 • int omp_get_place_num_procs(int place_num): Returns the number of processors available 
to the execution environment in the place specified by place_num in the place partition.

 • void omp_get_place_proc_ids(int place_num, int *ids): Gets the processors available 
to the execution environment in the place specified by place_num in the place partition, allocates an 
array to hold them, and puts that array at ids.

 • int omp_get_place_num(void): Returns the number of the place in the place partition to which 
the encountering thread is bound.

 • int omp_get_partition_num_places(void): Returns the number of places in the place 
partition of the innermost implicit task. Note that this differs from omp_get_num_places() in that it 
will show the effects of the spread binding policy as the place partition gets broken into subpartitions, 
whereas omp_get_num_places() will always show the full original place partition.

 • void omp_get_partition_place_nums(int *place_nums): Gets the list of place numbers 
corresponding to the place partition of the innermost implicit task and allocates an array in  
place_nums to store them. Note that the place numbers are the numbers of the places in the full 
original place partition. This function is particularly useful to see which places from the original place 
partition appear in a subpartition resulting from the use of the spread binding policy.
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Outlook on the OpenMP API Specification, Version 5.0
The OpenMP Architecture Review Board (ARB) is discussing other features that could appear in 
version 5.0 of the OpenMP specification. The most likely candidates are described in this section.

Memory Management Support
How to support increasingly complex memory hierarchies within OpenMP applications is an area 
of active discussion. This complexity comes from multiple directions: new memories with different 
characteristics (such as MCDRAM on Intel® Xeon Phi™ Processors or Intel® 3D XPoint™ memory), 
the need to request certain characteristics of the allocated memory to ensure good performance 
(e.g., certain alignments or page sizes), the need for special compiler support for some memories, 
NUMA effects, etc. Furthermore, many new memory technologies are being investigated, so any 
proposal needs to be extensible to handle future technologies.

The current working direction is based on two key concepts that try to model the different 
technologies and operations: memory spaces and allocators. Memory spaces represent system 
memory with a set of traits (e.g., page size, capacity, bandwidth, etc.) that programmers can 
specify to find the memory that they want their program to use. Allocators are objects that 
allocate memory from a memory space and can also have traits that alter their behavior (e.g., the 
alignment of allocations). 

New APIs are defined to manipulate memory spaces and allocators, and to allocate and 
deallocate memory. Separating the calls for creating an allocator and allocating memory allows 
the construction of maintainable interfaces where decisions about where memory should be 
allocated are taken in a common “decision” module. Figure 13 shows how the proposal can be 
used to select the memory with the highest bandwidth in the system that uses 2 MB pages and 
defines two different allocators from that memory: one that ensures allocations are 64-byte-
aligned and one that does not.

omp_memtrait_set_t  trait_set;
omp_memtrait_t  traits[] = {{OMP_MTK_BANDWIDTH,OMP_MTK_HIGHEST}, 
                            {OMP_MTK_PAGESIZE, 2*1024*1024}}; 
omp_init_memtrait_set(&trait_set,2,traits);

omp_memspace_t *amemspace = omp_init_memspace(&trait_set);

omp_alloctrait_t trait = {{OMP_ATK_ALIGNMENT},{64}};
omp_alloctrait_set_t trait_set;
omp_init_alloctrait_set(&trait_set,1,&trait);

omp_allocator_t *aligned_allocator = omp_init_allocator(amemspace,  
                                                        &trait_set);
omp_allocator_t *unaligned_allocator = omp_init_allocator(amemspace, NULL);

double *a = (double *) omp_alloc( aligned_allocator, N * sizeof(double) );
double *b = (double *)omp_alloc( unaligned_allocator, N * sizeof(double) );

    
13   Selecting the memory with the highest bandwidth
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A new allocate directive is proposed to affect the underlying allocation of variables that are not 
allocated with an API call (e.g., automatic or static variables). A new allocate clause can be used 
to affect the allocations done by OpenMP directives (e.g., private copies of variables). Figure 14 
shows how to use the directive to change the allocation of variables a and b to a memory with 
the highest bandwidth that also uses 2 MB pages. The private copies of b in the parallel region  
of the example are allocated on a memory with the lowest latency.

Improvements for Heterogeneous Programming
Several features are being considered to improve OpenMP’s device support:

 • Currently, structures in a map clause are bitwise copied, including pointer fields in a structure. If the 
programmer requires the pointer field to point to valid device memory, that would require creating  
the device memory and explicitly updating the pointer field on the device. The committee is discussing 
extensions that would enable the programmer to specify the automatic attaching/detaching of the 
pointer fields in a structure using a map clause by extending it to support pointer fields in structures.

 • The ARB is considering allowing function pointers to be used in a target region and also allowing  
a function pointer to appear in declare target.

 • New device memcpy routines that can execute asynchronously. 

 • Support to enable an “execute on device or fail” semantics of the target construct.  
Currently, target regions can execute silently on the host when the device is not available. 

 • Support for variables and functions that only exist on devices and are not copies of host-based ones.

 • Support for multiple types of devices in a single application.

Tasking Improvements
Beyond the features discussed in this article, other features being considered for OpenMP 5.0 are:

 • Enabling data dependencies between taskloop constructs.

 • Enabling data dependencies in both the task construct and taskloop construct to contain 
expressions that could be expanded to multiple values to generate more than dependence  
from a single depend clause.

 • Providing support to express task to thread affinity with patterns similar to those of OMP_PROC_BIND.

int a[N], b[M];
#pragma omp allocate(a,b) memtraits(bandwidth=highest, pagesize=2*1024*1024)

void example() {
#pragma omp parallel private(b) allocate(memtraits(latency=lowest):b)
    {
        // ...
    }
}

    
14   Changing the allocation of variables a and b to a memory with the highest bandwidth that also uses 2 MB pages
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Other Changes
Other areas where there are active discussions of additional features for OpenMP 5.0 include:

 • Upgrade the OpenMP base language specification to C11, C++11, or C++14, and Fortran 2008.

 • Relax the restrictions of the collapse clause to allow nonrectangular loop shapes and allow code  
to appear between the loops in the nest.

 • Allow reductions to happen in the middle of a parallel region without being associated with  
a work-sharing construct.

The OpenMP API is the gold standard of a portable and vendor-neutral parallel programming 
language for shared memory parallelization of C, C++, and Fortran applications in high-
performance computing and beyond. And with upcoming developments in version 5.0, it 
promises to offer much more for developers to fully utilize the capabilities of modern processors.

BY RUSS BEUTLER (INTEL) > 

Intel recently talked to CERN openlab CTO Maria Girone to discuss how CERN and Intel work together 
to deliver improvements in processing speed, sometimes by factors, and how that impacts CERN’s 
research on the basic constituents of matter. This conversation is meant to help developers  
understand how a Modern Code approach can help advance research and breakthroughs globally.  

In Part 2 of the interview, Maria offers advice for developers around building a code modernization 
strategy and discusses the programs available to enable developers and students to develop their  
skills, advance their careers, and bring large-factor improvements to the applications they work with.

What advice do you have for developers and companies building a code modernization strategy  
and looking to ensure that their applications take full advantage of modern server hardware? 

First, it’s important to recognize that there’s room for significant improvement when it comes to legacy 
code. And that it represents a good career opportunity for developers who are good at updating it.

Then, specifically, they should work to understand the gap between where their legacy software 
currently stands performance-wise, and the gains achievable through efficient parallelization  
and vectorization. Next, it’s important to demonstrate the improvements that can be made by 
undertaking a code modernization effort.

Code Modernization: Powering Scientific Discovery and Fostering Innovation 
Globally at CERN (Part 2)

BLoG hIGhLIGhTs

Read more
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Kazushige Goto, Murat Efe Guney, and Sarah Knepper, Software Development Engineers, Intel Corporation

reducInG PackInG overhead  
In MaTrIx-MaTrIx MuLTIPLIcaTIon
Improve Performance on Multicore and Many-Core Intel® Architectures,  
Particularly for Deep Neural Networks

General matrix-matrix multiplication (GEMM) is a fundamental operation in many scientific, 
engineering, and machine learning applications and is one of the key routines in the BLAS (basic 
linear algebra subprograms) domain. Four precisions (real single, real double, complex single, and 
complex double) of GEMM exist. In this article, we focus on SGEMM (real single precision). 

The Fortran API for SGEMM is: 

SGEMM(transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc) 

It performs the computation:

C := alpha * op(A) * op(B) + beta * op(C), where op(X) = X or XT 
(depending on the value of the transx parameter). 
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The arrays A and B are inputs, while C is both input and output. Array A contains an m-by-k matrix, 
array B a k-by-n matrix, and array C an m-by-n matrix. The leading dimensions (lda, ldb, and 
ldc) determine the stride from one column to the next, allowing GEMM to work on portions of 
a larger matrix. Leading dimensions can also impact the performance by causing subsequent 
columns to be cache line-aligned or to map to the same set on the 8-way level-1 cache.

Intel® Math Kernel Library (Intel® MKL) offers high-performing GEMM implementations. The 
typical approach for optimizing matrix-matrix multiplication is to transform blocks of the original 
input matrices into an internal data format (such as a packed format), multiply transformed blocks 
via a handwritten assembly kernel, and then update the output matrix.1 Block sizes are chosen  
to maximize cache and register usage. The reasons to pack are numerous:

 • The ability to fit more data from A and B into the caches, which allows for bigger blocking  
and more data reuse

 • Contiguous, aligned, and predictable accesses, which minimize cache and data translation  
lookaside buffer (DTLB) misses

 • A reduction in loop overhead

For conventional sizes in high-performance computing, this packing-based approach works well. 
In general here, m and n are relatively large, while k may be moderate (outer product) or also 
relatively large (square), so that the amount of time spent packing the input matrices is small, 
relative to the time spent in the computational kernel. However, for sizes where one of m or n is 
relatively small, as is common for some machine learning applications, the packing overhead can 
become significant. As a result, a GEMM implementation that does not rely on explicit packing 
can outperform a conventional, packing-based GEMM implementation. Intel MKL 11.3 Update 
3 includes {S,D}GEMM kernels that are optimized for some of these skewed sizes for Intel® 
Advanced Vector Extensions 2 (Intel® AVX2) and Intel® Advanced Vector Extensions 512  
(Intel® AVX-512) and on the 2nd generation of the Intel® Xeon Phi™ processor. Later versions  
of Intel MKL continue to improve these kernels.

To see an example of the benefit these new kernels can provide, Figure 1 compares the 
performance of SGEMM in Intel MKL 2017 Update 1 with that of Intel MKL 11.3 Update 2 for 
sizes that may arise in machine learning. Here, m and k are fixed to 1000 and 256, respectively, 
while n varies. The performance is given in gigaflops (billions of floating-point operations per 
second), so higher is better.
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Based on the particulars of the SGEMM call (including processor type and thread count, problem 
size and leading dimensions, and transposition parameters), Intel MKL chooses to use either the 
conventional kernels or the new packing-free kernels. Deep learning frameworks that rely on Intel 
MKL for SGEMM performance benefit from these optimizations without requiring modification to 
the frameworks.

Another way to minimize the packing overhead arises when one or more of the input matrices 
(A or B) is reused in multiple matrix multiplications; for example, this can arise during recurrent 
neural networks. Here, we can pay the cost to pack the reused matrix once and then use the 
packed version in multiple SGEMM computations. Intel MKL 2017 introduced packed APIs for 
{S,D}GEMM that allow the packing overhead to be amortized over multiple matrix multiplications. 
For single precision, the four new packed APIs are:

dest = sgemm_alloc (identifier, m, n, k)

sgemm_pack (identifier, trans, m, n, k, alpha, src, ld, dest)

sgemm_compute (transa, transb, m, n, k, A, lda, B, ldb, beta, C, ldc)

sgemm_free (dest)

    
1   Improved Intel® MKL SGEMM performance for skewed sizes

Configuration Info – Versions: Intel® Math Kernel Library (Intel® MKL) 11.3.2 and Intel® MKL 2017.1; hardware: Intel® Xeon® processor E5-2699v4, two 22-core 
CPUs (55 MB LLC, 2.2 GHz), 64 GB of RAM; operating system: RHEL 7.2 GA x86_64.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products. *Other names and brands may be claimed as the property of others. 
Benchmark Source: Intel Corporation

Optimization Notice:  Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to 
Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, 
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product 
are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please 
refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision 
#20110804. 

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/articles/optimization-notice#opt-en


Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

24The Parallel Universe

The parameters are similar to those of SGEMM, with the addition of the identifier character, 
which identifies which matrix (A or B) is to be packed. The transa and transb parameters of 
sgemm_compute can be set to “T” (transpose) or “N” (no transpose) as usual; additionally, a value 
of P indicates that the corresponding matrix is in the internal packed format. The packed APIs 
provide benefit if an input matrix is used multiple times; thus, sgemm_alloc and sgemm_pack 
would each be called once to allocate memory and pack the desired matrix in the internal packed 
format, respectively, followed by multiple calls to sgemm_compute where the packed matrix  
is passed as one of the input matrices. Finally, sgemm_free is called to release the memory.  
(For further details, please see the Intel® Math Kernel Library Developer Reference.) 

Figure 2 shows a comparison of the performance of sgemm and sgemm_compute  
(where the A matrix is packed and the packing time is ignored) in gigaflops. 

    
2   Faster matrix multiplication using Intel® MKL packed APIs

Configuration Info - Versions: Intel® Math Kernel Library (Intel® MKL) 2017.1; Hardware: Intel® Xeon® Processor E5-2699v4, 2 22-core CPUs (55MB LLC, 2.2GHz), 
64GB of RAM; Operating System: RHEL 7.2 GA x86_64.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products. *Other names and brands may be claimed as the property of others. 
Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to 
Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, 
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product 
are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please 
refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision 
#20110804. 
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Applications that reuse the larger of the A and B input matrices between GEMM calls have the 
greatest potential to benefit from packed APIs. If both m and n parameters are large, or if the 
smaller of the two input matrices is reused, the performance improvements from switching 
to packed APIs may not be significant enough to justify the programming effort. Therefore, 
we recommend measuring the performance of the particular use case before modifying the 
application code to employ packed APIs. 

As we have seen, the internal packing operation as found in a conventional GEMM 
implementation can have a noticeable overhead, particularly for sizes with one or more small 
dimensions. This overhead can be reduced by using kernels that avoid explicitly packing the input 
matrices or by amortizing the cost of packing over multiple GEMM computations. Starting from 
Intel MKL 11.3 Update 3, {S,D}GEMM can choose to use kernels that operate directly on the input 
matrices without first packing to internal buffers; which kernels are used is determined at runtime 
based on problem characteristics and processor information. Alternatively, Intel MKL 2017 
introduced packed APIs that allow one or both of the input matrices to be explicitly packed and 
then reused in multiple matrix-matrix computations. These two approaches help to achieve high 
GEMM performance on multicore and many-core Intel® architectures, particularly for sizes arising 
from deep neural networks.

1.   Kazushige Goto and Robert A. van de Geijn. 2008. “Anatomy of High-Performance Matrix   
 Multiplication.” ACM Transactions on Mathematical Software, 34, 3, Article 12, May 2008.
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With the constantly increasing number of computing cores in modern systems, we expect well-
parallelized software to increase performance―preferably linearly―with the number of cores. 
However, there are some factors limiting parallelism and scalability on multicore systems. We 
are not going to cover all of them in this article. But in most cases, the limitation is due to the 
implementation of parallelism: 

 • Load imbalance that leads to idle threads and CPU cores.

 • Excessive synchronization and, as a result, wasted CPU time in spin-waiting and other nonproductive work.

 • Parallel runtime library overhead, which might be due to misuse of the library API.

Vladimir Tsymbal, Software Technical Consulting Engineer, Intel Corporation

IdenTIFY scaLaBILITY ProBLeMs  
In ParaLLeL aPPLIcaTIons 
How to Improve Scalability for Intel® Xeon and Xeon Phi™ Processors  
Using New Intel® VTune™ Amplifier Memory Analysis
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When those limiting factors are eliminated, parallel efficiency improves significantly―with all 
CPU cores busy doing useful work. Near-linear speedup is observed on well-tuned benchmarks 
like STREAM or LINPACK. However, with the increasing number of cores on your system (or as 
you run your code on a newer system with more cores), you might notice that the performance 
of your application is not increasing linearly―or that parallelism begins to plateau (Figure 1).

According to the top-down performance analysis approach,1 you should first check if other 
components are limiting performance. Make sure that:

 • Your system is not constantly busy with something else that might consume resources, such as 
other applications or services consuming compute time.

 • Your application is not bound to system I/O (e.g., waiting for disk or other file system or network 
system operations to complete).

 • Your system has enough physical memory to avoid frequent swapping to the hard disk drive.

As a common recommendation, you are expected to be aware if your hardware is configured 
properly and the memory subsystem provides expected performance characteristics. For 
example, you have all memory slots filled with DIMMs that correspond to the motherboard 
characteristics (e.g., number of channels, memory speed). You can easily check performance  
of your hardware with known benchmarks. It’s important to do such a check, since it’s easier  
to fix the problem with hardware than with software optimizations. 

    
1   Performance changes according to the number of cores
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Once all these checks are done, look at memory latency as one of the main reasons for poor 
parallel scaling. In the x86 systems architecture, the CPU retrieves data from its cache subsystem. 
Ideally, data resides in the cache closest to the CPU (the L1 data cache) by the time it is needed by 
instructions (Figure 2). The farther requested data is from the CPU, the longer it takes to travel to 
the CPU core execution units. A CPU hardware prefetcher should help to bring data in faster, but 
it’s not always possible. Often, data is delayed, which can stall the CPU.2

    
2   Retrieving data from the memory subsystem

Basically, there are two reasons 
why data is late:

1. When data is requested by  
an instruction being executed 
in an EXE unit of the CPU, data 
bits make the long trip from 
the main memory or other 
caches to the CPU’s L1D (i.e., 
the prefetcher didn’t work). 
This creates a memory  
latency problem.

2. Data is requested in  
advance (i.e., the prefetcher 
did its work), but the bits 
got stuck in traffic on the 
way to the CPU because of 
the transport infrastructure 
capacity. This creates a 
memory bandwidth problem.

Of course, there might be a combination of both problems if several requests are made 
from several sources. To avoid these problems, it’s important to make smart usage of data. 
To solve the memory latency problem, ensure that data is accessed incrementally by its 
address. Sequential data access (or even unit stride, with a constant small distance) makes 
the prefetcher’s life easier―and data access faster. To solve the memory bandwidth problem, 
reuse data and keep it hot in cache as much as possible. Either solution requires reconsidering 
data access patterns or even the whole algorithm implementation.
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What’s Limiting the Scalability of Your Application?
Once we have identified that our code execution is inefficient on a CPU, and we have observed 
that most stalls are memory bound, we need to define the specific memory problem because the 
solution is different depending on whether the problem is due to memory latency or bandwidth. 
We will use Intel® VTune™ Amplifier’s embedded memory access analysis for a detailed 
investigation of memory problems. 

Let’s consider several iterations of improving a simplified matrix multiplication benchmark. In 
spite of its simplicity, it effectively demonstrates the possible memory problems that can occur 
depending on how the algorithm is implemented. For measurements, we will be using an Intel® 
Xeon® processor E5-2697 v4 (code-named Broadwell, 36 cores) system with known theoretical 
parameters of memory bandwidth = 76.8 GB/s and double-precision (DP) floating point 
operations per second (FLOPS) = 662 GFLOPS/s.

Naïve Implementation of the Matrix Multiplication Algorithm
The naïve matrix multiplication implementation (multiply1, in Figure 3) will never scale linearly  
to a large number of CPU cores. Nevertheless, for educational purposes, it’s a good example  
to illustrate how to identify causes of inefficient performance. The only improvement we would 
make is adding the –no-alias compiler option in order to allow vectorization. Otherwise, a 
scalar implementation would be roughly 10 times slower. The results of running the vectorized 
benchmark multiply1 on matrix size 9216 x 9216 can be found in Table 1. Note that the best 
performance is well below the theoretical maximum FLOPS.

void multiply2(int msize, int tidx, int numt, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM], TYPE t[]
[NUM])
{
 int i,j,k;

// Loop interchange
 for(i=tidx; i<msize; i=i+numt) {
  for(k=0; k<msize; k++) {
#pragma ivdep
   for(j=0; j<msize; j++) {
    c[i][j] = c[i][j] + a[i][k] * b[k][j];
   }}}}

    
3   Optimized implementation of the matrix multiplication algorithm (multiply2)
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As Table 1 shows, the parallel benchmark is scaling almost linearly with increasing numbers  
of threads. Scaling begins to plateau when more than 30 cores are involved. The data in  
Table 1 might create a false confidence regarding the performance and scaling of the multiply1 
benchmark. It’s extremely important to understand how much your benchmark is using the 
compute power of a machine. In our case, the reported FLOPS (determined in the benchmark)  
is far from the theoretical number calculated for the machine earlier (approximately 10x smaller). 
The parallel scalability is not limited but the serial performance is. Note that Intel VTune Amplifier 
indicates the code execution within the loop is inefficient (Figure 4). The low Retiring and high  
CPI rates help estimate how far we are from practical limits.

    
4   Performance of the naïve, parallel matrix multiplication benchmark

No. Threads Elapsed Time, Seconds DP FLOPS, GFLOPS/Second

4 208 7.7

8 102 15.1

16 59 26.8

36 42 37.8

72 HT 24 66.1

Table 1. Performance and scaling of the naïve matrix multiplication (36 cores, Intel® Xeon® processor E5-2697 v4,  
two sockets @ 2300 MHz)
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Next, we’ll look at an optimized implementation of the matrix multiplication algorithm 
(multiply2 in Figure 3). If the algorithm is simple enough, and if your compiler is smart enough, 
it will recognize the inefficient index strides and generate a version with interchanged loops 
automatically (or you can do that manually). 

No. Threads Elapsed Time, Seconds DP FLOPS, GFLOPS/Second

4 208.8 7.8

8 103.3 15.1

16 58.8 26.4

36 38.4 40.5

72 HT 24.7 63.0

Table 2. Performance and scaling of the optimized matrix multiplication (36 cores, Intel® Xeon® processor E5-2697 v4,  
two sockets @ 2300 MHz)

As you might have noticed from Table 2, the absolute numbers are slightly better, but still  
far from ideal.

Let’s try to understand what’s limiting performance and scalability. The General Exploration 
profiling results (Figure 5) implement yet another top-down analysis approach, this time  
for CPU microarchitecture.3 We might notice a couple of interesting things.
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First, notice that the memory latency for bringing data from DRAM to CPU decreased. This is 
expected, since we implemented contiguous address access in the algorithm. But the memory 
bandwidth metric is very high. With that in mind, we should check the bandwidth numbers of 
the main data paths to make sure the DRAM controller and Intel® QuickPath Interconnect (QPI) 
are not bottlenecks. Second, notice the L3 latency is high as well, even though the data access 
has a contiguous pattern. This requires additional considerations. High L3 latency meant that we 
frequently have L2 misses, which is strange because the hardware L2 prefetcher should work 
(and does work, since the DRAM latency does not decrease with contiguous access). Third, the 
remote DRAM latency is significant. This indicates that there are nonuniform memory access 
(NUMA) effects, and some portion of data is fetched from remote DRAM for each node. So, to 
make the whole picture of data transfers clearer, we need to measure data traffic on the DRAM 
memory controller and the QPI bus between sockets. For that purpose, we use VTune memory 
access profiling.

Figure 6 shows the profiling results for the example with 72 threads. Only one DRAM controller 
is loaded with data (package_1), and the average data rate is almost 50 GB/second, which  
is roughly two-thirds of the maximum bandwidth. On the memory controller of package_0,  
the traffic is negligible.

    
5   General Exploration profiling results
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In the same time period, we observe that half of the data traffic in the outgoing QPI lane 
formed package_1. This explains how the data gets from package_1 DRAM to the package_0 
CPU cores (Figure 7). This cross-QPI traffic creates extra latency for data that is being fetched 
either from remote DRAM by the prefetcher or from remote LLC by a CPU core. Eliminating 
the NUMA effect might be easy for the benchmark, since the data is well structured and evenly 
distributed among threads. We just set thread affinities to the CPU cores and have each thread 
initialize the a, b, and c matrices. But we need to be careful in assuming that allocating data 
within each thread would eliminate all NUMA effects. 

    
6   Collecting the Memory Access profile on multiply2 with 72 threads

    
7   Cross-QPI traffic
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Figure 8 shows an example that fails to improve performance under the previous assumption, 
and a way to detect the problem using Intel VTune Amplifier. In the benchmark source code, we 
introduce a function that represents threads pinned to enumerated CPUs. Figure 8 shows a part 
of the code.

CreateThreadPool( … )
{
 pthread_t ht[NTHREADS];
 pthread_attr_t attr;
 cpu_set_t cpus;
 pthread_attr_init(&attr);

 for (tidx=0; tidx<NTHREADS; tidx++) {
     CPU_ZERO(&cpus);
      CPU_SET(tidx, &cpus);
      pthread_attr_setaffinity_np(&attr, sizeof(cpu_set_t), &cpus);
  pthread_create( &ht[tidx], &attr, (void*)start_routine, (void*) &par[tidx]);

 }
 for (tidx=0; tidx<NTHREADS; tidx++)
  pthread_join(ht[tidx], (void **)&status);
}

InitMatrixArrays (int msize, int tidx, int numt,  … )
{
    int i,j,k,ibeg,ibound,istep;
    istep = msize / numt;
    ibeg = tidx * istep;
    ibound = ibeg + istep;

    for(i=ibeg; i<ibound; i++) {
      for (j=0; j<msize;j++) {
            a[i][j] = 1.0*i+2.0*j+3.0;
            b[i][j] = 2.0*i+1.0*j+3.0;
            c[i][j] = 0.0;
        }
    }
}

    
8   Threads pinned to enumerated CPUs

    
9   Simplifying NUMA awareness

In a data initialization function, the arrays should be distributed between threads in the same way 
the arrays are multiplied in the multiplication function. Figure 9 shows the modification done in 
the functions to simplify NUMA awareness. In the initialization function, the data array is divided 
by chunks of size msize/numt, which is the size of the matrix divided by the number of threads. 
The same is done in the multiplication function shown in Figure 10. Surprisingly, the runtime 
for the benchmark is not much better than the NUMA-unaware version, so let’s analyze with an 
VTune memory access profile (Figure 11).
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multiply2(int msize, int tidx, int numt,  … )
{
    int i,j,k,ibeg,ibound,istep;
    istep = msize / numt;
    ibeg = tidx * istep;
    ibound = ibeg + istep;

        for(i=ibeg; i<ibound; i++) {
                for(k=0; k<msize; k++) {
                        for(j=0; j<msize; j++) {
                                c[i][j] = c[i][j] + a[i][k] * b[k][j];
}}}}

Threads #: 72 Pthreads
Matrix size: 9216
Using multiply kernel: multiply2
Freq = 2.30100 GHz
Execution time = 20.162 seconds
MFLOPS: 72826.877 mflops

    
10   Multiplication function

    
11   Memory access profiling
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The summary page notifies us that the application is still memory bound (with stalls due to data 
latencies from memory and data traffic), but the latencies are mostly caused by LLC and less by 
DRAM. Also, the ratio between local and remote access is very high, which means that the NUMA 
awareness approach didn’t work. If we check the timeline for traffic over the DRAM controller and 
QPI (Figure 12), we see that the data stream from DRAM is hardly reaching 30 percent of peak 
bandwidth, but the QPI is saturated at approximately 90 percent of its capacity in each direction 
(the practical limit for QPI is 29.2 GB/s for this system).

    
12

 
 Checking the timeline for traffic over the DRAM controller and QPI

Remote access (whether DRAM or LLC) is increasing latency for reading memory blocks and 
making the CPU stall. Those latencies can be measured by Intel VTune Amplifier’s memory 
access, which allows us to identify which data (matrix) is still being accessed in an inefficient, 
remote way. If we examine the memory analysis summary (Figure 13), we can observe which 
memory objects created most of the latency.
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Among the three top memory objects (represented by their allocation function), we notice 
that one clearly represents the biggest portion of latencies and is responsible for a large 
number of load operations (Figure 14). Note that only one object has an average latency 
high enough to conclude that the data is from the remote DRAM of LLC. We can confirm this 
conclusion by the numbers in the Remote DRAM Access columns. 

    
13   Top memory objects by latency

    
14   Memory objects by allocation function

It’s easy to figure out that those three objects are the three a, b, and c matrices. The one with 
high Stores is matrix c. To identify which matrix data is creating high latencies, you need to check 
the stack for the memory object in the Intel VTune Amplifier stack pane (Figure 15). Going by the 
stack in the user code, we can drill down to the source line of data allocation presented in the 
Intel VTune Amplifier Source View (Figure 16). In this case, it’s a matrix b data that creates latency 
chatter and an increased number of loads. Now we need to understand why it’s happening 
despite the fact that the data arrays were allocated and initialized within pinned threads. 
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A quick investigation of the algorithm with transposed matrices reveals a fundamental inefficiency 
in the data access pattern (Figure 17). For each matrix a row, the whole matrix b has to be read 
entirely from memory.

    
15   Memory objects by stack pane

    
16   Intel® VTune™ Amplifier source view
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The matrices include about 9K elements in a column/row. So, the whole matrix memory block 
size will exceed any CPU cache capacity, generating constant cache data eviction and reloads 
from DRAM. Even though the distributed rows of matrices c and a are accessed by threads on 
the CPU cores on which they were allocated, it doesn’t completely apply to matrix b. Half of 
the matrix b data will be read by threads from a remote socket in this implementation of the 
algorithm. Even worse, reading the whole matrix b for each row of matrix a creates a redundant 
data load operation (N times more than needed) and generates excessive traffic on QPI for 
accessing remote data. 

Similarly, you can define which data objects were contributing to increased traffic for DRAM or 
MCDRAM on Intel Xeon Phi processor-based systems. You just need to select which memory 
domain traffic you want to analyze. You can get the objects’ reference and allocating stack 
information (Figure 18) and, when grouped by bandwidth Domain and bandwidth Utilization 
Type, you can observe the objects and identify those that contribute most to the L2 Miss Count 
(Figure 19). 

    
17   Algorithm with transposed matrix
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18   Analyzing memory domain traffic

    
19   Bandwidth domain
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Data Blocking
We can decrease the data latencies for eliminating CPU stalls by yet another modification of the 
multiplication algorithm. We want all data in the three matrixes being accessed by threads running 
on a local socket. One of the well-known and frequently used modifications is data blocking 
(Figure 20). It allows working with smaller blocks of arrays from each of the matrices, keeping 
them hot in caches and reused by CPU (which, in turn, gives opportunities for further performance 
improvements through optimizing the blocks for CPU cache sizes). Also, this makes it easier to 
distribute the blocks among threads and prevent massive remote accesses and reloads.

If we look at the results of the cache blocking modification (Figure 21), we can observe that even 
without fixing NUMA effects, memory latencies are much smaller and execution is much faster.

    
20   Matrix data blocking
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According to the General Exploration profile (Figure 22), the Retiring pipeline slots increased  
up to 20 percent, while the rest of CPU stalls are shared between Memory Bound and Core 
Bound execution.

./matrix.icc
Threads #: 72 Pthreads
Matrix size: 9216
Using multiply kernel: multiply3
Freq = 2.3 GHz
Execution time = 12.08 seconds
MFLOPS: 128710.367 mflops

    
21   Cache blocking modification (multiply3)

    
22   General Exploration profile (multiply3)
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According to the Latency Histogram (Figure 23), most of the latencies are concentrated around 
L2 access values, while the rest are in the zone of 50 to 100 cycles, which is in the area of LLC Hit 
latency numbers. The Bandwidth timeline diagram (Figure 24) shows that most of data is taken 
from a local DRAM, and traffic on QPI is slightly increased. This is still a smaller performance than 
the Intel® Math Kernel Library (Intel® MKL) implementation of the double-precision matrix 
multiplication (dgemm), but closer to it for this size of matrix (Figure 25). So, the final optimization 
that we could do is modifying the algorithm to be blocked and fully NUMA aware. The final 
performance is shown in Table 3 and Figure 26.

    
23   Latency histogram (multiply3)

    
24   Bandwidth timeline diagram (multiply3)
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Table 3. Performance of the final matrix3 optimization (36 cores, Intel® Xeon® processor E5-2697 v4, two sockets @ 2300 MHz)

$./matrix.mkl
Threads #: 72 requested OpenMP threads
Matrix size: 9216
Using multiply kernel: multiply5
Freq = 2.799980 GHz
Execution time = 2.897 seconds
MFLOPS: 540032.936 mflops

    
25   Performance measurement for Intel® MKL-based multiply5

No. Threads Elapsed Time, Seconds DP FLOPS, GFLOPS/Second

4 104.8 14

8 60.1 25

16 31.3 49

36 17.85 87

72 HT 12.08 128

The promise of artificial intelligence has captured our cultural imagination since at least the 1950s—
inspiring computer scientists to create new and increasingly complex technologies, while also building 
excitement about the future among regular everyday consumers. What if we could explore the bottom 
of the ocean without taking any physical risks? Or ride around in driverless cars on intelligent roadways? 
While our understanding of AI—and what’s possible—has changed over the past few decades, we have 
reason to believe that the age of artificial intelligence may finally be here. So, as a developer, what can 
you do to get started? This article will go over some basics of AI, and outline some tools and resources 
that may help. 

How to Get Started as a Developer in AI
BY NIVEN SINGH (INTEL) > 

BLoG hIGhLIGhTs

Read more
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Note on the scalability graph:
 • The matrix3 line goes beyond the ideal line due to cache blocking effects, which make the single-threaded 

version execute faster than a naïve implementation.

 • Until the number of threads is equal to the number of physical cores, the matrix3 line goes closer to the 
ideal line, while adding hyper-threading does not improve scaling.

Conclusion
Some memory access patterns might appear to be causing poor scalability in parallel applications 
due to CPU microarchitecture constraints. To avoid the constraints, you need to identify exactly 
which data arrays cause the CPU to stall while waiting for data. With Intel VTune Amplifier memory 
access profiling, you can identify the data objects that cause the biggest delays, as well as the 
amount of this delay measured in CPU clock ticks, the level of the cache subsystem in which the 
data reside, and the source code for data object allocation and delayed access. This information 
should help you reconsider your algorithm to deliver better memory access patterns.

    
26   Matrix multiplication benchmark results
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Martyn Corden, Software Technical Consulting Engineer, Intel Corporation

vecTorIzaTIon oPPorTunITIes For  
IMProved PerForMance wITh InTeL® avx-512
Examples of How Intel® Compilers Can Vectorize and Speed Up Loops

Editor’s note: The last issue of The Parallel Universe touched on Intel® Parallel Studio XE 2017 
support for enhanced vectorization. In this issue, Martyn Corden dives deeper into Intel® AVX-512 
instructions to show developers how to expose vectorization that was not previously possible.

The days of easy performance improvements from steadily increasing clock speeds are long 
gone. Moore’s Law instead provides increased parallelism through additional cores and more 
and wider SIMD registers. Besides the increased SIMD vector width of 512 bits, Intel® Advanced 
Vector Extensions 512 (Intel® AVX-512) includes new instructions that enable vectorization 
of some loops that could not be vectorized with older instruction sets and more efficient 
vectorization of others. 
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In this article, we’ll explain, with examples, how Intel® C/C++ and Fortran compilers can 
vectorize and speed up loops that compress or expand arrays and loops that fill histograms or 
perform scatters with potential address conflicts. We will also show how the compiler can convert 
strided loads or gathers into more efficient unit stride SIMD loads for certain types of loops over 
arrays of structures. Finally, we’ll show how to recognize this conversion using new features of 
the optimization report in the Intel® Compiler version 17.0 from Intel® Parallel Studio XE 2017. 
These optimizations can benefit a broad range of applications running not only on the Intel® 
Xeon Phi™ X200 processor, but also on future Intel® Xeon® processors that support the Intel  
AVX-512 instruction set.

A Vectorization Refresher
Figure 1 illustrates a simple, double-precision floating-point loop. In scalar mode, one instruction 
produces one result. After vectorization, a single Intel AVX-512 instruction can produce eight 
results, compared to four for Intel® AVX, or two for Intel® Streaming SIMD Extensions (Intel® SSE). 
The Intel Xeon Phi x200 processor supports Intel AVX-512 instructions for a wide variety of 
operations on 32- and 64-bit integer and floating-point data. This may be extended to 8- and 16-
bit integers in future Intel Xeon processors.

Automatic vectorization is enabled by default in the Intel® compiler. However, one of the switches 
in Figure 2 must be set in order to target the Intel AVX-512 instructions.

    
1   Scalar and vectorized loop versions with Intel® SSE, AVX and AVX-512
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Compress and Expand Loops
The Fortran example in Figure 2A illustrates array compression. Only those elements of a large 
source array that satisfy a condition are copied into a smaller target array. The C example in 
Figure 2B illustrates the inverse operation (i.e., array expansion), where elements of a smaller 
source array are copied back into the larger, sparse array.

The conditional increment of the dense array index introduces a dependence between loop 
iterations. In the past, this would have prevented automatic vectorization. For example, when 
compiling the loop in Figure 2A targeting Intel® AVX2, the optimization report shows:

Linux* and OS X* Windows* Functionality

-xmic-avx512  /Qxmic-avx2 Intel® Xeon Phi™ x200 processor family  only

-xcore-avx512 /Qxcore-avx512 Future Intel® Xeon® processor only

-xcommon-avx512 /Qxcommon-avx512
Intel® AVX-512 subset common to both.  

Not a fat binary.

-axmic-avx512 /Qaxmic-avx512
Fat binary. Targets Intel® Xeon Phi™ x200 
and also other Intel® Xeon® processors

-xhost /Qxhost Targets the compilation host
    
Table 1. Compiler switches to enable Intel® AVX-512 instructions

   nb = 0
   do ia=1, na               ! line 23
     if (a(ia) > 0.) then
       nb = nb + 1          ! dependency
       b(nb) = a(ia)         ! compress
     endif
   enddo

int j = 0
for (int i=0; i <N; i++) {
    if (a[i] > 0) {
        c[i] = a[k++];   // expand
    }
}
// Cross-iteration dependencies via j and k

    
2A   Array compression

    
2B   Array expansion

ifort -c -xcore-avx2 -qopt-report-file=stderr -qopt-report=3 compress.f90
…
LOOP BEGIN at compress.f90(23,3)
  remark #15344: loop was not vectorized: vector dependence prevents vectorization.  …                              
  remark #15346: vector dependence: assumed ANTI dependence between nb (25:7) and nb (25:7)
LOOP END
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The C example in Figure 2B behaves in the same way. An OpenMP* SIMD directive cannot be 
used either, because the dependency would lead to incorrect results.

Intel AVX-512 overcomes this dependency with the new vcompress instructions that write 
selected elements of one SIMD register into contiguous elements of another, or to memory. 
Likewise, the vexpand instructions write contiguous elements from a source register or memory 
to selected (sparse) elements of a destination SIMD register. These new instructions allow the 
compiler to vectorize the compression example (Figure 2A) when Intel AVX-512 is enabled:

ifort -c -xmic-avx512 -qopt-report-file=stderr -qopt-report=3 compress.f90
…
LOOP BEGIN at compress.f90(23,3)
   remark #15300: LOOP WAS VECTORIZED
   remark #15450: unmasked unaligned unit stride loads: 1
   remark #15457: masked unaligned unit stride stores: 1
…
   remark #15497: vector compress: 1
LOOP END

All elements of the source array are loaded, so the load is unmasked. Only selected elements are 
stored, so the effective store is masked. The optimization report contains remark #15497 to show 
that a compress idiom was recognized and vectorized. An assembly listing, obtained with the -S 
option, shows instructions such as:

vcompressps %zmm4, -4(%rsi,%rdx,4){%k1}                 

Similar results are obtained for the array expansion loop in Figure 2B.

Compressing a single-precision array of 1,000,000 random values by a factor of two,  
repeated 1,000 times on an Intel Xeon Phi 7250 processor, resulted in an approximately  
16x speedup of Intel AVX-512 over Intel AVX2, which corresponds to the width of the SIMD 
registers and instructions.

Intel AVX-512 Conflict Detection Instructions
Loops containing a store with indirect addressing have a potential dependency that typically 
prevents vectorization. For example:

    for (i=0; i<n; i++)  a[index[i]] = …

If index[i] has the same value for two different values of i, the stores conflict and cannot be 
executed safely at the same time. The vpconflict instruction from Intel AVX-512 resolves this 
conflict by providing a mask for those SIMD lanes (values of i) that are conflict-free (i.e., no values 
of index[i] are duplicated). After the SIMD computation has been safely performed for these 
lanes, the loop is re-executed for any lanes that were masked out.

    
3   Array compression when Intel(r) AVX-512 is enabled
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Histogramming
Filling a histogram is a common operation in many applications (e.g., image processing).  
The code fragment in Figure 4 fills a histogram of sin(x) in the array h for an array x of input 
values. With Intel AVX2, this does not vectorize because of a dependency, since two input values 
could contribute to the same histogram bin, ih:

for (i=0; i<n; i++) {                   
      y     = sinf(x[i]*twopi);
      ih    = floor((y-bot)*invbinw);
      ih    = ih > 0     ? ih : 0;
      ih    = ih < nbin-1 ? ih : nbin-1;
      h[ih] = h[ih] + 1;                       //  line 25
   }

icc -c -xcore-avx2 histo.c -qopt-report-file=stderr -qopt-report-phase=vec
…
LOOP BEGIN at histo2.c(20,4)
      remark #15344: loop was not vectorized: vector dependence prevents vectorization…
      remark #15346: vector dependence: assumed FLOW dependence between h[ih] (25:7) and h[ih] (25:7)
LOOP END

    
4   Loop to fill a histogram of sin(x)

Intel AVX-512 conflict detection instructions allow this loop to be vectorized safely:

In the assembly code (not shown), x and index are loaded, and ih is calculated for all SIMD 
lanes. This is followed by a vpconflict instruction and a masked gather of the unique bins  
(i.e., elements of h) into a register, which are then incremented. If some values of ih were 
duplicated, the code loops back and reincrements the corresponding bins. Finally, there is  
a masked store (scatter) of the incremented bins back into h. 

ifort -c -xmic-avx512 histo2.f90 -qopt-report-file=stderr -qopt-report=3 -S
…
LOOP BEGIN at histo2.c(20,4)
   remark #15300: LOOP WAS VECTORIZED
   remark #15458: masked indexed (or gather) loads: 1 
   remark #15459: masked indexed (or scatter) stores: 1
   remark #15499: histogram: 2
LOOP END
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A simple test that filled a histogram of 200 bins from a single-precision array of 100,000,000 
random values between 0 and 1, repeated 10 times, was compiled first for Intel AVX2 and 
then for Intel AVX-512 and run on an Intel Xeon Phi 7250 processor. A nearly 9x speedup 
was observed. The speedup depends heavily on the problem details. It comes mostly from 
vectorization of the loop computations, such as the sine function in this example, not from the 
gather and scatter themselves. The speedup can be large in the common case where conflicts 
are relatively infrequent. However, it may be smaller if there are many conflicts, as in a histogram 
containing a singularity or narrow spike.

Gather-to-Shuffle Optimization
Large arrays of small structures or of short vectors occur frequently but present a challenge 
to efficient vectorization. Vectorization over the structure content or short vectors may be 
impossible or inefficient due to the low trip count. Vectorization over the large array index is also 
inefficient because data used by consecutive iterations are not adjacent in memory, so efficient 
SIMD loads of contiguous data cannot be used. This is illustrated in Figure 5, which simply 
calculates the sum of squares of the components of an array of 3-vectors.

The older version 15 compiler vectorizes this loop using strided loads or gathers to load each 
component of the struct:

struct Point { float x; float y; float z; };

float sumsq( struct Point *ptvec, int n) {
    float   t_sum = 0;

    for (int i=0; i<n; i++) {
        t_sum += ptvec[i].x * ptvec[i].x;
        t_sum += ptvec[i].y * ptvec[i].y;
        t_sum += ptvec[i].z * ptvec[i].z;
    }
    return  t_sum;
}

icc -std=c99 -xmic-avx512 -qopt-report=4 -qopt-report-file=stderr -qopt-report-phase=vec,cg
…
LOOP BEGIN at g2s.c(6,5)
   remark #15415: vectorization support: gather was generated for the variable ptvec:  strided by 3   
…
   remark #15300: LOOP WAS VECTORIZED
   remark #15460: masked strided loads: 6

    
5   Handling large arrays of small structures
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However, the compiler can do better by noting that the x, y, and z components of the struct  
are adjacent in memory. The compiler can perform SIMD loads of the components, and then 
perform permutations and shuffles to transpose the data so it is laid out for vectorization  
of the loop over i, as illustrated in Figure 6.

    
6   Data transpose to enable vectorization  

Report from: Code generation optimizations [cg]
sumsq.c(10,22):remark #34030: adjacent sparse (strided) loads optimized for speed. Details: stride { 
12 }, types { F32-V512, F32-V512, F32-V512 }, number of elements { 16 }, select mask { 0x000000007 }.

When compiled with the newer version 17 compiler, the optimization report contains a “code 
generation” component:

This shows that the compiler was able to convert the original strided loads into contiguous 
SIMD loads followed by shuffles and permutes. A simple test loop over 10,000 random points, 
repeated 100,000 times, was compiled for Intel AVX-512 and run on an Intel Xeon Phi 7250 
processor. The observed speedup using the version 17 compiler, compared to the version 
15 compiler, was more than a factor of 2. The same optimization is performed if pt is a two-
dimensional array pt[10000][3], or in Fortran, if pt is a two-dimensional array pt(3,10000) 
or a derived type array.

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/articles/optimization-notice#opt-en


Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

54The Parallel Universe

The compiler can sometimes perform this “gather to shuffle” optimization when targeting 
other instruction sets. However, the powerful new shuffle and permute instructions result  
in it being generated much more frequently when targeting Intel AVX-512. 

Summary
Powerful new instructions in Intel AVX-512 enable improved application performance 
through the vectorization of some loops that could not be vectorized previously, and more 
efficient vectorization of others. The compiler optimization report shows when and where 
these optimizations are performed.
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Additional Resources
Intel® Xeon Phi™ processor

A Guide to Auto-Vectorization with Intel® C++ Compilers 

Explicit Vector Programming in Fortran

Initially written for Intel® Xeon Phi™ x100 coprocessors but also applicable elsewhere: 
Vectorization Essentials

Fortran Array Data and Arguments and Vectorization

Intel® Compiler User Forums

Webinars   
Getting the Most out of Your Compiler with New Optimization Reports 

Further Vectorization Features of the Intel® Compiler  

From Serial to Awesome: Advanced Code Vectorization and Optimizations 

Data Alignment, Padding, and Peel/Remainder Loops 

Exercise in performance optimization on Intel® architecture, including Intel® Xeon Phi™ processors.

NOTE: This lab is an overview of various optimizations discussed in Chapter 4 in the book  
Parallel Programming and Optimization with Intel Xeon Phi Coprocessors, second edition (2015).  
The book can be obtained at xeonphi.com/book.

In this step, we will look at how to modernize a piece of code through an example application. 
The provided source code is an N-body simulation, which is a simulation of many particles that 
gravitationally or electrostatically interacting with each other. We keep track of the position and the 
velocity of each particle in the structure "Particle." The simulation is discretized into timesteps. In each 
timestep, first, the force on each particle (stored in the structure) is calculated with a direct all-to-all 
algorithm (O(n^2) complexity). Next, the velocity of each particle is modified using the explicit Euler 
method. Finally, the positions of the particles are updated using the explicit Euler method.

Direct N-body Simulation
BY MIKE P. (INTEL) > 
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Read more
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Software must be both threaded and vectorized to fully utilize today’s and tomorrow’s hardware. 
Data-driven vectorization design can yield long-term performance growth with less risk 
and more impact. Even with perfect vector and thread parallelism, developers often have to 
additionally balance CPU/vector/thread utilization versus memory subsystem data bottlenecks. 
This aspect of optimization could often be addressed by using a roofline “bounds and 
bottlenecks” performance model. 

This article provides an overview of Intel® Advisor 2017 and discusses the new Intel Advisor 
Roofline Analysis feature. The roofline model provides an intuitive and powerful representation 
of how to best address performance issues in your application. Finally, a case study shows the 
optimization process on a real example.

Kevin O’Leary, Technical Consulting Engineer; Ilyas Gazizov, Senior Software Developer; Alexandra Shinsel, 
Technical Consulting Engineer; Zakhar Matveev, Product Architect; and Dmitry Petunin, Technical Consulting 
Engineer, Intel Corporation

InTeL® advIsor rooFLIne anaLYsIs
A New Way to Visualize Performance Optimization Trade-offs
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Roofline Model
Roofline modeling was first proposed by University of California at Berkeley researchers Samuel 
Williams, Andrew Waterman, and David Patterson in the paper Roofline: An Insightful Visual 
Performance Model for Multicore Architectures in 2009. Recently, it was extended to address 
all levels of the memory subsystem, as described by Aleksandar Ilic, Frederico Pratas, and Leonel 
Sousa in their Cache-Aware Roofline Model: Upgrading the Loft paper.

A roofline model provides insight into how your application works by helping you answer these 
questions:

 • Does my application work optimally on the current hardware? If not, what is the most underutilized 
hardware resource?

 • What limits performance? Is my application workload memory or compute bound?

 • What is the right strategy to improve application performance?

The model plots data to help you visualize application compute and memory bandwidth ceilings 
by measuring two parameters:

1. Arithmetic intensity, the number of floating-point operations per byte transferred between CPU  
and memory

2. Floating-point performance measured in billions of floating-point operations per second (GFLOPS)

The proximity of the data points to the model lines (rooflines) shows the degree of optimization 
(Figure 1). The kernels on the right-hand side, in the blue region, are more compute bound.  
As you move up the Y axis, they get close to the floating-point peak. The performance of these 
kernels is bounded by the compute capabilities of the platform. To improve the performance 
of kernel 3, consider migrating this kernel to a highly parallel platform, such as the Intel® Xeon 
Phi™ processor, where the compute ceiling and memory throughput are higher. For kernel 2, 
vectorization can be considered as a performance improvement strategy, since it is far away  
from the ceiling.

Toward the left-hand side of the plot, in the red region, the kernels are memory bound.  
As you move up the Y axis, they are limited by the DRAM and cache peak bandwidth of the 
platform. To increase the performance of these kernels, consider improving the algorithm or  
its implementation to perform more computations per data item, thereby shifting the plot 
position to the right, where the performance ceiling is higher. These kernels may also run faster 
on an Intel Xeon Phi processor because of the higher memory bandwidth.
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Intel Advisor Overview
Intel Advisor is a software analysis tool offering a powerful software design and performance 
characterization platform for applications. Intel Advisor incorporates thread parallelism 
prototyping (Threading Advisor), vector parallelism optimization (Vectorization Advisor), and 
memory-versus-compute characterization (Advisor Roofline Automation) capabilities. 

In this article, we mainly focus on the Advisor Roofline and Vectorization analyses. When using 
the Intel Advisor GUI, you can switch between Vectorization and Threading Advisor flows using 
the “Workflow” toggle. The Roofline chart can be accessed by using the Roofline sidebar  
(Figure 2). 

    
1   Roofline chart

    
2   Intel® Advisor workflow selector
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Vectorization Advisor can help you increase the performance of your code using these steps:
 • Survey shows which loops consume the most time with detailed SIMD statics.

 • FLOPS and Trip Counts measure iteration counts, call counts, and the precise number of floating-
point operations per second for each loop and function.

 • Recommendations gives specific advice on how to fix performance issues.

 • Dependencies Analysis provides a dynamic dependency analysis to verify if a loop has cross-
iteration dependencies that can limit vectorization and parallelization.

 • Memory Access Patterns Analysis checks if you are accessing memory in a vector-friendly manner.

You can discover many important performance and design insights by combining 
Vectorization Advisor and Roofline analyses. For example, knowing the Vectorization Efficiency 
metric provided by the Vectorization Advisor Survey Report is often crucial when interpreting 
the data on a roofline chart.

Intel Advisor Roofline Analysis
Intel Advisor implements the “cache-aware” flavor of the roofline model, which provides 
additional insight by addressing all levels of memory/cache hierarchy:

 • Sloped rooflines illustrate peak performance levels if all the data fits into the respective cache.

 • Horizontal lines show the peak achievable performance levels if vectorization and other CPU 
resources are used effectively.

Intel Advisor places a dot for every loop in the roofline plot (Figure 3). The circle sizes and 
colors denote the relative execution time of the loops. Most of the loops require further 
optimizations to better utilize cache memory. Some, such as the green dot sitting on the 
dotted ScalarAddPeak line, just to the right of the vertical line in the middle, may be a 
loop that is poorly vectorized. As you can see, the roofline chart makes it easy to locate 
opportunities to improve application performance.
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How to Interpret the Intel Advisor Roofline Chart
A roofline plot provides useful information but is not a reference table, in which one simply 
locates their input and reads the corresponding output. It is a guide that suggests what factors 
to investigate. It requires interpretation.

The lines on a roofline chart, such as the ones in Figure 3, are representative of hardware 
limits on kernel performance based on benchmarks run by Intel Advisor to establish baselines 
and performance limits on the host system. The uppermost lines form the roofs that are 
representative of the maximum performance of the machine. In Figure 3, the uppermost 
lines are “L1 Bandwidth” and “Single Vector FMA Peak.” Not every kernel can achieve this 
performance and may be ultimately limited by lower roofs, depending on the nature of 
the algorithm (e.g., a kernel that cannot be vectorized would be limited by the maximum 
performance of scalar computations).

A kernel’s horizontal position on the plot is its arithmetic intensity (the number of floating-
point operations per byte transferred between CPU and memory, as measured by operand 
size), which is primarily determined by its algorithm, though this can be altered somewhat by 
optimizations that occur during compilation. Figure 4 gives examples of different algorithms 
and their relative arithmetic intensities. Redesigning a kernel’s algorithm to increase its 
arithmetic intensity pushes it to the right in the roofline chart, which may be helpful in raising 
its maximum potential performance, due to the slopes of the memory bandwidth roofs.

   
 

3   Intel® Advisor  
roofline chart  
with source tab
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A kernel’s vertical position relative to the various roofs reveals bottlenecks. If a kernel is placed 
above a roof, then that roof is not the primary performance bottleneck, although it can still 
affect performance. The roofs above a kernel are potential bottlenecks, each corresponding to 
an issue that can be overcome using a particular type of optimization. If a kernel is below the 
scalar computation peak line, then it is worth investigating the kernel’s vectorization status. If it 
is unvectorized, or inefficiently vectorized, it is likely that this roof represents the bottleneck and 
suggests that it would be prudent to improve or implement the kernel’s vectorization if possible. 
If, on the other hand, this kernel is efficiently vectorized, the scalar computation peak can be ruled 
out as a bottleneck, and you can move on to investigating the other roofs above the kernel.

Solving Performance Problems Using Intel Advisor
Some Intel Advisor tips are provided in this section.

Tip No. 1: Use the summary view to see the top time-consuming loops (Figures 5 and 6)  
and tuning recommendations (Figure 7).

    
4   Arithmetic Intensity 

    
5   Summary of top loops
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Tip No. 2: Use roofline customization to remove the roofs you don’t need (Figure 8).

For example, if you are operating on only single-precision data, you can safely remove  
the double-precision peaks from your roofline.

Tip No. 3: Use Smart Mode to find the best optimization 
candidates (Figure 9).

Loops are ordered on the roofline by their Elapsed Self 
Time, but by activating Smart Mode, you can identify loops 
that have high total time. The more total time that is spent 
in a loop, the larger the overall effect of optimizing it can be.

   
 

6   Summary  
of top loops  
with top loop  
vectorized

    
8   Intel® Advisor roofline chart customization

    

7   Summary  
of top  
recommendations
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9a   Intel® Advisor Smart Mode selector

Tip No. 4: Use some of the other Intel Advisor features to supplement the information in the 
roofline chart. 

Vectorization efficiency is your vectorization thermometer (Figures 10 and 11). Under Instruction 
Set Analysis, look at the Traits column to see factors that could be affecting vectorization  
(Figure 10). Consider running the Intel Advisor memory access pattern collection if you suspect 
you’re referencing memory in a non-vector-friendly fashion. [Editor’s note: Vladimir Tsymbal’s 
article “Identifying Scalability Problems in Parallel Applications on Multicore Systems”  
in this issue of The Parallel Universe describes some techniques to analyze memory access.]

    
9b   Intel® Advisor roofline chart filtered using Smart Mode

    
10   Intel® Advisor survey highlighting vectorization efficiency
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Tip No. 5: Isolate vectorized from nonvectorized loops using the loop toggle (Figure 12).

Tip No. 6: Use the source window together with the roofline chart (Figure 13).

Intel Advisor seamlessly integrates your source code into the performance profile.

    

11   Intel® Advisor Vectorized  
Efficiency explanation

    

12   Intel® Advisor Vectorized/ 
Not Vectorized loop selector

BY JAMES C. (INTEL) >  and BENJAMIN C. (INTEL) > 

The Intel® Xeon Phi™ Product Family x200 series processors (formerly known as Knights Landing) 
contain a model-specific feature, which allows the MONITOR and MWAIT1 instructions to be executed in 
rings other than ring 0, whereas architecturally, these instructions are restricted to ring 0 (kernel  code). 
Specifically, this feature allows them to be executed in ring 3, which is normal user mode.

The feature can be enabled by setting bit 1 (as below) in MSR 140H (the MISC_FEATURE_ENABLES 
model-specific register). The register can also be read to determine whether the instructions are 
enabled at other than ring 0.

Intel® Xeon Phi™ Product Family x200 (KNL) User mode (ring 3)  
MONITOR and MWAIT

BLoG hIGhLIGhTs

Read more
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Case Study: Using Roofline Analysis to Tune an MRI Image  
Reconstruction Benchmark
The 514.pomriq SPEC ACCEL Benchmark is an MRI image reconstruction kernel described in 
Stone et al. (2008). MRI image reconstruction is a conversion from sampled radio responses to 
magnetic field gradients. The sample coordinates are in the space of magnetic field gradients, 
or K-space. The Q matrix in the MRI image reconstruction is a precomputable value based 
on the sampling trajectory, the plan of how points in K-space will be sampled. The algorithm 
examines a large set of input, representing the intended MRI scanning trajectory and the 
points that will be sampled. Each element of the Q matrix is computed by a summation of 
contributions from all trajectory sample points. Each contribution involves a three-element 
vector dot product of the input and output 3-D location plus a few trigonometric operations. 
The output Q elements are complex numbers but the inputs are multielement vectors. The 
kernel is fundamentally compute bound because trigonometric functions are expensive, and 
the regularity of the problem allows for easy management of memory bandwidth. Therefore, 
once tiling and data layout remove any artificial memory bandwidth bottleneck, the most 
important optimizations are low-level sequential code optimizations and improving the 
instruction stream efficiency, such as loop unrolling.

The input to 514.pomriq consists of one file containing the number of K-space values; the 
number of X-space values; and the list of K-space coordinates, X-space coordinates, and Phi-
field complex values for the K-space samples. Each set of coordinates and the complex values 
are stored as arrays with each field written contiguously. The 514.pomriq output consists of the 
resulting Q matrix of complex values in “real, imaginary” format for each line. This case study 
will analyze the 514.pomriq compute kernel and focus on its optimization. The Intel Advisor 
summary for 514.pomriq run on an Intel Xeon Phi 7250 processor is shown in Figure 14,  
where it is easy to see that loops involved in computing the Q matrix are the hotspot.

    
13   Intel® Advisor roofline chart highlighting source integration
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We use Intel Advisor Smart Mode to narrow down the best optimization candidates (Figure 15a). 
The loop where we are spending the most time is vectorized, but it is still below the MCDRAM 
roof (Figure 15b). This possibly indicates issues with memory use. Let’s examine the loop using 
Code Analytics and Recommendations.

    
14   Intel® Advisor summary view

    
15a   Intel® Advisor smart mode selector
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We can see heavy gather instructions here and advice to explore the memory access pattern of 
the loop (Figures 16 and 17). After running a memory access pattern analysis, we observe a 4 
percent gather stride, which gives us a tip as to where there might be the potential bottleneck: 
nonoptimal memory access (Figure 18). After looking at the details, we can verify that there is 
no need to use gather instructions since the stride is constant (Figure 19a). We can also see the 
same in the Intel Advisor recommendations (Figure 19b).

    
15b     Intel® Advisor roofline chart filtered using smart mode 

    
16   Intel® Advisor Code Analytics tab highlighting gathers

    
17   Intel® Advisor memory access patterns recommendation
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18   Intel® Advisor Memory Access Patterns Report

    

19a   Intel® Advisor Memory  
Access Pattern Report  
details

    
19b   Intel® Advisor gather/scatter recommendation
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Everything becomes clear after checking the source code of the kernel (Figure 20). The code 
uses an array of structures, which become “gathers” after vectorization. However, newer versions 
of the Intel® compiler can recognize the access pattern and apply optimizations to get rid of 
gathers in order to use more lightweight instructions. “Gathers” replacement is performed by the 
“Gather to Shuffle/Permutes” compiler transformation and can often be profitable on modern 
CPUs, especially on platforms with Intel AVX-512 support. [Editorʼs note: Martyn Corden’s article 
“Vectorization Opportunities for Improved Performance with Intel® AVX-512” in this issue of 
The Parallel Universe describes how the Intel® Compiler 2017 takes advantage of Intel AVX-512 
to create new opportunities for loop vectorization.]

Let’s take a look at the roofline after recompilation using the new Intel compiler (e.g., Intel 
Compiler 2017 Update 1) with “Gather to Shuffle/Permutes” support. We can see that the dot 
is above MCDRAM now, and there are no gather instructions (replaced with Intel AVX-512 
“2-source permutes”), as well as an increased number of floating-point operations per second 
(Figures 21 and 22).

#pragma omp simd private(expArg, cosArg, sinArg) reduction(+:QrSum, QiSum)
      for (indexK = 0; indexK < numK; indexK++) {
        expArg = PIx2 * (kVals[indexK].Kx * x[indexX] +
        kVals[indexK].Ky * y[indexX] +
        kVals[indexK].Kz * z[indexX]);

        cosArg = cosf(expArg);
        sinArg = sinf(expArg);

        float phi = kVals[indexK].PhiMag;
        QrSum += phi * cosArg;
        QiSum += phi * sinArg;
      }

    
21   Intel® Advisor roofline chart showing loop now above MCDRAM bandwidth

    
20   Source code of the rate-limiting kernel

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/articles/optimization-notice#opt-en


Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

70The Parallel Universe

However, there is a more effective way to resolve such issues: AOS (array of structures) to SOA 
(structure of arrays) conversion. This optimization allows us to use more convenient data containers 
to improve efficiency during vector processing. In the past, it involved manually reworking the 
underlying data structures. Now, using the Intel® SIMD Data Layout Templates library (Figure 23),  
we can simply improve the performance by adding a few lines of code where the kValues 
structure is declared, where the structure is initialized, and where the K-values are computed.

    
22   Intel® Advisor Code Analytics tab

#include <sdlt/sdlt.h>
struct kValues {
  float Kx;
  float Ky;
  float Kz;
  float PhiMag;
};

SDLT_PRIMITIVE(kValues, Kx, Ky, Kz, PhiMag)

sdlt::soa1d_container<kValues> inputKValues(numK);
auto kValues = inputKValues.access();

  for (k = 0; k < numK; k++) {
    kValues [k].Kx() = kx[k];
    kValues [k].Ky() = ky[k];
    kValues [k].Kz() = kz[k];
    kValues [k].PhiMag() = phiMag[k];
  }

auto kVals = inputKValues.const_access();
#pragma omp simd private(expArg, cosArg, sinArg) reduction(+:QrSum, QiSum)
      for (indexK = 0; indexK < numK; indexK++) {
        expArg = PIx2 * (kVals[indexK].Kx() * x[indexX] +
        kVals[indexK].Ky() * y[indexX] +
        kVals[indexK].Kz() * z[indexX]);

        cosArg = cosf(expArg);
        sinArg = sinf(expArg);

        float phi = kVals[indexK].PhiMag();
        QrSum += phi * cosArg;
        QiSum += phi * sinArg;
      }

    
23   Using the SIMD Data Layout Templates library
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Let’s check the new roofline chart (Figure 24). After applying this optimization, the dot is no 
longer red. This means it takes less time now, and it has more GFLOPS, putting it close to the 
L2 roof. Additionally, the loop now has unit stride access and, as a result, no special memory 
manipulations. The total performance improvement is almost 3x for the kernel and 50 percent 
for the entire application. Additionally, the loop now has unit stride access and, as a result,  
no special memory manipulations (Figure 25a and 25b).

    
24   Intel® Advisor final optimized roofline chart

    
25a   Intel® Advisor final optimized Memory Access Patterns Report

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/articles/optimization-notice#opt-en


Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

72The Parallel Universe

Conclusion
The roofline model provides a new, visually intuitive, and powerful representation of your 
application’s performance. By using the proper optimization techniques, as indicated by the 
region of the roofline chart your application is in, you can avoid wasting valuable time on 
optimizations that will have minimal impact on your performance. The roofline model can answer 
the following questions:

 • Can I get better performance?

 • What are the key performance bottlenecks: memory or CPU?

 • How much speedup can I get if I optimize a particular bottleneck?

 • How much speedup can I get if I use another platform?

As systems get bigger and more complex, getting these answers is nontrivial, but roofline analysis 
can save you time and effort.

Modernize Your Code
 • To get the most out of your hardware, you need to modernize your code with vectorization  

and threading. 

 • Taking a methodical approach such as the one outlined in this article, and taking advantage of the 
powerful tools in Intel® Parallel Studio XE, can make the modernization task dramatically easier.

 • Use Intel® Advisor roofline analysis, now available in Intel® Parallel Studio XE 2017 Update 1.

 • Send an email to vector_advisor@intel.com to get the latest information on some exciting new 
capabilities that are currently under development.

    
25b   Intel® Advisor final optimized Code Analytics tab
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Useful Intel Advisor Links
Get started with the Intel® Advisor roofline feature

Selftime-based FLOPS computing with an important explanation of how to interpret 
roofline results for nested loops

Analyzing Intel MPI applications with Intel Advisor

References
Stone, S. S.; J. P. Haldar, S. C. Tsao, W. W. Hwu., Z. Liang, and B. P. Sutton. “Accelerating 
advanced MRI reconstructions on GPUs.” In International Conference on Computing Frontiers, 
pages 261–272, 2008.

TrY InTeL® advIsor,  
ParT oF InTeL® ParaLLeL sTudIo xe >

https://swdevtoolsmag.makebettercode.com/
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature?utm_campaign=cmd_12875-1&utm_source=pum27&utm_medium=pdf&utm_content=oleary_gettingstarted_advisor_roofline_link6
https://software.intel.com/en-us/articles/selftime-based-flops-computing-vectorization-advisor?utm_campaign=cmd_12875-1&utm_source=pum27&utm_medium=pdf&utm_content=oleary_selftime_flops_link7
https://software.intel.com/en-us/articles/analyzing-intel-mpi-applications-using-intel-advisor?utm_campaign=cmd_12875-1&utm_source=pum27&utm_medium=pdf&utm_content=oleary_analyzing_mpi_link8
http://makebettercode.com/parallelstudioxe-eval/en?utm_campaign=cmd_12875-1&utm_source=pum27&utm_medium=pdf&utm_content=oleary_cta_psxe_link9


Share with a friendSign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

74The Parallel Universe

Artificial intelligence (AI)―the concept of intelligent machines that are able to perform tasks 
such as visual understanding, speech perception, language processing, and decision-making 
that otherwise require human intelligence―continues to be the next big thing, at least since the 
introduction of computers. 

Machine learning is proving to be very effective in performing some of the key AI tasks. Artificial 
neural networks (ANNs), a loose model of the mammalian cerebral cortex neuronal structure, 
were especially promising for AI due to their ambitious design and general applicability to a wide 
variety of tasks. The strength of ANNs lies in their ability to learn and maintain hidden transient 
states (hidden nodes). This makes it possible for them to learn a wide range of mappings, from 
the input to the desired output, by cascading several nonlinear functions. 

Pubudu Silva, Senior Software Engineer, Machine Learning and Computer Vision, Intel Corporation
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In a learned ANN, hidden layers represent the internal abstraction of the data in hierarchical 
stages, with deeper layers representing higher levels of abstraction. It is believed that mammalian 
brains also process information with multiple hierarchical processing layers (e.g., in primate 
visual systems, processing is done in a sequence of stages from edge detection, primitive shape 
detection, and moving up to gradually more complex visual shapes).1 Therefore, multilayer, 
“deeper” ANNs are naturally desired for AI research. 

Networks that process data in a sequence of multiple stages with deep cascaded layers are 
typically called “deep networks.” Most of the widely used machine learning algorithms―such as 
support vector machines (SVMs), mixture of Gaussian (MoG), k-nearest neighbors (kNN), principal 
component analysis (PCA), and kernel density estimation (KDE)―don’t contain more than three 
layers of processing. Hence, they can be considered “shallow” architectures. ANNs with two to 
three layers can be successfully trained. There were several unsuccessful attempts in training 
deeper ANNs during the last decades of the twentieth century. They faced two main issues: 

1. Vanishing gradient issues 

2. Over-fitting arising from the increased number of weights introduced by the additional layers

With the advances in computing, researchers were able to train machine learning algorithms with 
millions of data samples in a relatively shorter time, effectively resolving the over-fitting issues. 
Convolutional neural networks (CNNs) are deep networks with multiple layer types, but they 
contain many fewer weights (than a fully connected ANN of equivalent depth) due to their weight-
sharing philosophy. Hence, CNNs are much easier to train than ANNs. With CNNs, theoretical best 
performance is only slightly worse than that of the ANNs. They have become very popular for 
supervised image learning tasks. Thanks to the breakthrough discovery of Hinton et al. in 2006,2 
successful deep networks―such as deep belief networks and deep auto-encoders―also made 
their way to unsupervised learning. 

In general, deep networks have outperformed almost all other machine learning algorithms 
in most AI-related tasks such as classification, regression, image captioning, and natural 
language processing. The stunning success of deep networks can be attributed to the way they 
autonomously learn feature hierarchies. 

The key contrast between deep learning and traditional statistical learning methods is that the 
latter learns on human-engineered features of the data while the former learns on raw data itself. 
Deep networks autonomously generate the features best suited to a given task in their early 
levels as DNNs learn. This effectively removes the guesswork and human bias from the learning 
process, leaving the whole learning task to a cost function–based optimization process on the 
given original data. 
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Deep, layered structure allows learning hierarchies of features, where deeper levels learn  
higher-level features based on the lower-level features learned by prior levels of the network. 

Figure 1 shows how an input image is transformed into gradually higher levels of representation 
in a deep network. The deeper the image goes into the network, the more and more abstract 
the representation becomes. For example, learned feature hierarchy, from initial layers to deeper 
ones, could be edges, shapes, parts of objects, total objects, the scene, etc. However, in practice, 

it is hard to speculate what the “right” 
feature vectors should be for each of 
these hierarchical layers of abstraction 
without going through the learning. This 
underscores the key issue in learning on 
human engineered features: generally, in 
deeper networks, the output layer gets to 
process very high-level features, enabling 
it to learn much higher-level concepts 
than is possible with shallower networks.

As the various deep learning techniques 
have become standard tools for 
developers, data scientists, and 
researchers, a number of deep learning 
frameworks (such as Caffe, Tensorflow*, 
Theano*, and Torch), and libraries 
(MatConvNet, CNTK, Pylearn2, and 
Deeplearning4j) have been developed to 
help easily train and score deep networks. 
These frameworks and libraries are 
immensely helpful in reducing tedious 
boilerplate work. The user can focus effort 
on the deep learning aspects rather than 
implementing the individual components. 

    

1   Deep network processing of an image input by transforming it to gradually higher levels of representation  
Source: Yoshua Bengio, Learning Deep Architectures for AI, 2009
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Additionally, users have access to the codebase of most of the frameworks and libraries, since 
they are often launched as open source projects, with active contributions from the developer 
community. Since deep learning typically involves training on super-large data sets, for days and 
even weeks, performance optimization of the commonly used deep learning software is critical  
to the advancement of the technology in general. 

Intel consistently contributes to the open source deep learning frameworks especially by 
optimizing them for Intel® architecture. Its machine learning site contains up-to-date information 
on Intel’s involvement in machine learning and deep learning. More information about the 
performance optimization tools and techniques can be found there. Some of the optimization 
efforts are published as case studies to guide software developers in their own deep learning 
applications and any frameworks or libraries they may use in the development cycle. 

For example, the process followed in optimizing Caffe is presented in the case study Caffe 
Optimized for Intel® Architecture: Applying Modern Code Techniques. Intel® VTune™ 
Amplifier is a powerful profiling tool that provides valuable insights, which can be used as the 
initial guidance for performance optimization process, such as CPU and cache usage, CPU core 
utilization, memory usage, threading load balance, and thread locks. Libraries such as Intel® Math 
Kernel Library (Intel® MKL), Intel® Threading Building Blocks (Intel® TBB), and OpenMP* have 
proved to be very instrumental in optimizing deep learning software. 

In order to accelerate the deep learning development and research, Intel recently announced the 
Intel® Deep Learning SDK, which is a free set of tools for data scientists and software developers 
to develop, train, and deploy deep learning solutions. The SDK is designed as a Web-based client 
connected to an Ubuntu*/CentOS server. The simple installation wizard installs the SDK with the 
popular deep learning frameworks that are optimized for Intel architecture on the server. The 
training tool of the SDK greatly simplifies the preparation of training data, model design, and 
model selection with its simple graphical user interface and advanced visualization techniques. 
Deployment tools can be used to optimize trained deep learning models to specific target devices 
via model compression and weight quantization techniques.
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